
METHODS & TOOLS
Practical knowledge for the software developer, tester and project manager ISSN 1661-402X
Spring 2008 (Volume 16 - number 1) www.methodsandtools.com

Can We Develop Agile Software in Traditional Organizations?

As it was confirmed by our last survey, the adoption of agile approaches has been increasing
recently. Following these results, I asked software practitioners on different discussion forums
to share their opinion about the substance of agile adoption. As agility is now becoming
"trendy", we could see a number of organizations that will qualify now themselves as "agile",
without implementing the essence of the agile software development practices. The fact that
everyone could have its own definition of "Agile" is not upsetting. After all, agile groups
different approaches like extreme programming, scrum or test driven development. People could
adopt the "agile" badge as they could have been doing "RUP" before, just because it is the
"right" answer. Besides this, the main obstacle to true agile adoption is the organizational
context existing in large companies or governments agencies. As a participant cleverly says, it is
difficult to transition from a "Command & Control to a Collaborate & Communicate structure".

Drawing from an engineering perspective, many organizations wants to specify a solution and
then estimate the time and budget needed to realize it. I suppose that you would not commit to
build a new house without a detailed plan and a budget. Many managers don't act differently
when they have to invest in a new software system. The agile approach requires relinquishing
the (illusion of) long-term control to accommodate changes during the project. We have a long
history of organizations signing off projects knowing that the probability of getting the initial
requirements for the budgeted price is very low, and this is also true for other domains than
software development. People don't ignore this situation, but the buyer mainly uses the project
"contract" as a protection mechanism against criticism. On the other side, many sellers use the
proposal only to get the contract signed, hopping to bargain about price and functions after the
project has begun. We are sadly often more dealing with organizational politic than honest
human relationships. This has caused often a situation of distrust between users and developers
and transition open collaborative development is difficult. If things started to go wrong,
managers don't want to find themselves explaining to their boss that they started a project with a
lot of (assumed) uncertainty. The final question is: should we adapt organization to approach or
adapt approach to organization and people? I support the agile trend to change the user-
developer relationships, but I doubt that this will be a quick and easy goal to achieve, moreover
in large organizations where the political aspect is more important. We should therefore keep in
our toolbox different approaches to suit diverse organizational contexts. This is also why this
issue will offer different visions to improve your software development process.

Inside
How Quality is Assured by Evolutionary Methods .. page 2

OpenUP –The Best of Two Worlds .. page 21

Real Reuse for Requirements.. page 33

Creating an Agile Environment .. page 41

www.methodsandtools.com

Methods & Tools

Methods & Tools * Spring 2008 * Page 2

Software Development Jobs
Methods & Tools introduces a new job board

http://www.softdevjobs.com/
Are you looking for an efficient, simple and cost effective
tool to recruit experienced developers, Web designers,
testers, database administrators or software project
managers?

Your job post will reach an audience of 40'000 monthly
Web site visitors and be mentioned in the future Methods
& Tools issues that are delivered to a global community of
more than 50'000 software development professionals.

Facts: Asia, North America and Europe host each around
30% of our registered readers. They work as developers
(37%), project managers (27%) and in quality assurance
(20%).

Methods & Tools readers will
get a 50% discount with
discount code "MT01".

Job seeker? Get automatic alerts of new jobs in your
country or speciality via e-mail or RSS

http://www.softdevjobs.com/

Project Management

Methods & Tools * Spring 2008 * Page 3

How Quality is Assured by Evolutionary Methods

Niels Malotraux, niels @ malotaux.nl
http://www.malotaux.nl/nrm/English/

1 Introduction

After several years of experience as a Project Coach introducing Evolutionary Project
Management Methods (Evo) in development projects, I think I can claim that Quality can be
Assured if projects apply these methods. Does this mean that the Quality Assurance function is
not needed any more? No. QA is still needed, because one of the main factors jeopardizing the
Assured Quality is lack of discipline - discipline to keep applying the methods in order to meet
our commitments.

In many cases, people know the best way to do their work. However, if nobody is watching,
people tend to take shortcuts. If somebody is watching over their shoulder, people tend to take
fewer shortcuts. The Project Manager can watch over the shoulders of the team. The team can
watch over each other’s shoulders. But who’s watching over the Project Managers’ shoulder?
This task is the responsibility of management, but the Quality Assurance function can help.

Even with an assurance function in place, team members still have to know what is the best way
to do their work in the first place. Since there is no absolute “best way”, while the “best way” is
even dynamically changing, we must also provide the people with an ability to actively find out
the best way while working in the project.

Evo is actually rapidly and frequently applying the Plan-Do-Check-Act (or Deming) cycle, not
just for the development of the product, but at the same time for the organization of the project
and even for assessing and improving the methods used on the project. We need to continuously
ask ourselves: “What should we do now, in which order, to which level of detail for now”.

Working the Evo way means organizing the work in weekly (or even shorter) Task-cycles. In
these Task-cycles we optimize estimation, planning, and tracking. Task-cycles feed bi-weekly
(or shorter) Delivery-cycles by which we optimize the requirements and our assumptions. We
use a practice known as TimeLine to create and maintain the total project scope and to connect
the Project Result, through the Deliveries, with the actual work organized in Tasks. Evo
combines Estimation, Planning, Tracking, Requirements Engineering, Requirements
Management, and Risk Management into Result Management. Result is defined as the combined
value we provide to all the Stakeholders of our product, ultimately leading to customer success.
Evo has a fanatical view on ROI: Whatever we do should contribute to the Result and we try to
avoid whatever does not contribute

In this paper I will explain the basics of this Evolutionary approach and practical details people
can start applying immediately.

2 The Goal

Let’s assume that the purpose of development projects is to deliver what the customer needs, at
the time he needs it, to create substantially greater value than the cost of development and to
enable customer success. In short, we call this Quality On Time: the right things at the right
time.

http://www.malotaux.nl/nrm/English/

Project Management

Methods & Tools * Spring 2008 * Page 4

It is important to note that the functionality we are working on in most development projects
already exists. Usually, all we are supposed to do is enhance the performance of specified
functionality to create more value for the customer. The set of functions we are enhancing
defines the scope of the project. The scope should be chosen such that it provides more value for
cost than another scope.

Banks have banked for thousands of years. First using clay tablets, then using card-trays and
now using computers. Banks are, however, still doing what they did before. The function is still
the same, while the performance (ease, speed, complexity of transactions) is enhanced. If a new
system does not deliver sufficiently more value than the old system, there will be no funds to pay
for the new system and the developers.

It would be nice if we could in one project develop the ultimate solution, creating the ultimate
value. Apart from the risk that, when done, we could be out of work, this is not possible because
of limited resources such as:
• The available time (time to market may strongly influence time to profit)
• The available money
• The available people and the capabilities of these people (it would be nice if we could hire

the best people. Normally, however, the challenge is to succeed with average people)
• The available experience on the subject
• The available technology
• The capability of the users to adopt the new system

Advertisement – Visual Use Case - Click on ad to reach advertiser web site

http://www.technosolutions.com/topteam_use_case.html

Project Management

Methods & Tools * Spring 2008 * Page 5

In development projects we can only strive to optimize the compromise between value creation
and the available limited resources. If the results we can achieve, given these limited resources,
are insufficient to provide significant value for customer success, we shouldn’t even start the
project. Given these limited resources we are not even satisfied with good results, we actively
want to maximize the Result created. Looking back at the end of a project, not only should our
customer have a big smile of satisfaction, we should ourselves also be confident that we
couldn’t have done better.

This implies that we should feel a Sense of Urgency to constantly optimize the results we are
working on, to constantly optimize our success. Without this Sense of Urgency, Evo doesn’t
work.

3 Plan-Do-Check-Act

Since childhood we learn intuitively through experience. Besides learning from our own
experience, we also learn from accepting the experience of others: at school, in workshops and
at conferences. This learning process is rather slow. We can, however, stimulate the learning
process by actively using the Plan-Do-Check-Act cycle, as presented by Deming:

• Plan What are we supposed to accomplish and how are we going to accomplish it?

• Do Carry out the Plan

• Check Is the result and the way we achieved the result according to the Plan?

• Act
If the result was not according to the Plan, what are we going to differently the next time to
achieve a better result?
If the result was according to the Plan, was it accidental? How do we make sure next time
the result is equally according to Plan?

Plan
What do we

want to know
or to do

Do
Carry out plan

Check
Is Result
according
to plan?

Act
What are we
going to do
differently

1

23

4

Figure 1: PDCA or Deming cycle

Do is never a problem: we “do” all the time. Plan we do more or less, usually less. For Check
and Act, however, we have no time because we think we want to go to the next Do. Well, that’s
what I believed until recently. Taking a closer look at what really is happening we can see that
Check is often done: people seem to be quite aware what is going wrong and often even know
what should be done about it. The real problem is that we don’t Act: taking what we know and
doing something about it.

Sometimes I hear people in a project week after week complaining about the same problem,
usually that somebody else is doing something wrong. My advice: either deal with it or stop
complaining. Don’t keep wasting energy complaining about the same problems over and over.
Do something: Act! Find a solution, plan the time needed and solve the problem.

Project Management

Methods & Tools * Spring 2008 * Page 6

4. Evo

4.1 Evo

Evo is short for Evolutionary Development, Evolutionary Delivery, Evolutionary Project-
Management, deliberately going through the Plan-Do-Check-Act learning cycle rapidly and
frequently, for product, project and process, continuously thinking “what to do, in which order,
to which level of detail for now”. It’s a label for a set of methods that allow us to effectively and
efficiently run projects, delivering Quality On Time. Evo integrates Planning, Requirements and
Risk Management into Result Management. It’s actively induced evolution because we don’t
wait for evolution to happen, we make it happen.

Many organizations mandate a Project Evaluation at the end of every project. Even so, few
projects do the actual evaluation because they feel that these evaluations do not contribute to
better results. Why is this? Consider one-year projects (see figure 2). People have to evaluate
what went wrong and what went accidentally right (and why) as long as a year ago. In addition,
they may not be able to use the learning from an event until as long as a year after the fact. The
idea of evaluation is valuable. The time constants of this process as described above are,
however, beyond the capabilities of the human mind. In Evo, we do evaluations (PDCA) every
week. This tunes the time dimension to the human mind’s abilities and enables us to rapidly
implement what we learn.

Advertisement – Manage your Projects from End to End - Click on ad to reach advertiser web site

http://www.mks.com/

Project Management

Methods & Tools * Spring 2008 * Page 7

4.2 Evo and the Product

We don’t know the real requirements. They don’t know the real requirements either. So, stop
pretending we know, and accept that we have to find out what the real requirements are,
together. This includes finding out who they are. We can make the nicest systems, given
unlimited time and money. However, our customer doesn’t have unlimited time and money. If
the customer cannot afford all what is possible, we must find out the best Result we can achieve
within the limited resources. If that’s less than the customer needs for success, we shouldn’t
even start.

project project

st
ar

t

e v
al

ua
tio

n

s t
ar

t

ev
al

u a
tio

n

one project duration

task
cycle

project

st
ar

t

en
d

s t
ar

t

en
d

ev
al

ua
tio

n
ev

al
ua

ti o
n

ev
al

ua
tio

n

task
cycle

task
cycle

Project evaluation

Result evaluations

Figure 2: Project and Result evaluations

Result is the value gained by the use of what we developed. Result ultimately is customer
success. If no value is gained, there is nothing to pay our salaries from. Because not all
customers are aware of this, we have to work with the customer to find out what the optimum
Result is to make sure that we are generating significant value. In Evo we work with a no-cure
no-pay attitude. Whatever does not contribute to customer success, we don’t do.

4.3 Evo and the Project

The optimum Result is the best product for the least cost. At the start of the project we don’t
know what the optimum Result is, so we must organize the project in such a way that we
discover and implement the optimum Result at the lowest cost. This implies optimizing the
effectiveness and efficiency of discovery and implementation. It also means that we have to
change our estimation practice from optimistic to realistic, so that we can predict the future
more accurately. We have to accept the realistic estimates and plan accordingly. We have to
dynamically keep our plans up to date in order to keep control over the Result. We must learn
better time management and better priority management. These are among many issues we can
improve. In Evo we are constantly, dynamically improving on these issues because our success
is at stake. We do not only design the product, we also design the project.

We take time and money budgets very seriously. This means that we don’t ask for more when
we were supposed to deliver. If the budgets really were insufficient we could have predicted this
way before the budgets ran out and, together with the customer, we could have acted
accordingly.

4.4 Evo and the Process

Because it is continually being improved as a process, Evo is made up of the best set of methods
we know at a given time. If we find a better way, we change to the better way. Not only do we

Project Management

Methods & Tools * Spring 2008 * Page 8

employ PDCA on the product and project activities, we also constantly and dynamically apply
the PDCA cycle to the methods we use. If another method seems better, we try it. We may
experiment. But we deliberately Check and Act: if the new method is better, we change to the
better method. If the new method is not better, we revert to the last known best method.
Methods, processes and procedures are there to help us. If they don’t, we discard them. A side
effect is that Evo processes may be different between projects and between organizations
because of differences in culture or differences in experience. The common property is always
the urge for success in defined goals.

4.5 Does Evo cost more time?

Some people fear that all these evaluations, intensive planning and constant improvements will
cost a lot of extra time. It does not: experience based on many projects proves that it saves time.
Why else would we do it? The “extra” things we do in Evo projects are the things that should be
done anyway on any project to make it successful. So, we don’t really do “extra” things. We
only do those things that contribute to Quality On Time.

4.6 When do you not need Evo?

There are circumstances where you may consider not using Evo, such as:

• The requirements are completely clear and nothing will change. This is production, not
development.

• The requirements can be easily met with the available resources in the available time. Still,
Evo can make you achieve better results in shorter time.

• The customer can wait until you are ready. Still, Evo can make you achieve better results in
shorter time. Why waste your time while you can do more interesting things?

• The customer doesn’t care about the result. Should we contemplate this project? Is he going
to pay?

• You don’t care about the cost or time. Could be a hobby or a vacation.

• Your boss doesn’t care about the cost or time. He probably doesn’t know what to do with his
money.

• Management doesn’t know what to do with the time saved. Be careful, they may frustrate
your project.

• There is no Sense of Urgency.

Sense of Urgency is an important issue to watch for. Most people, including management, will
immediately affirm the urgency of the best Result at the lowest cost. That’s trivial. However,
there are cases where their actions tell a different story. The remedy is either to educate them by
coaching, or not to bother them with Evo. There are plenty of places where you can be
successful with Evo, so why bother if they don’t want to be more successful. Besides, Evo is
never a goal in itself. Result is all that counts.

If they get optimum results their way, you shouldn’t complain, but rather learn from how they
do it.

Project Management

Methods & Tools * Spring 2008 * Page 9

Advertisement – International Java Conference - Click on ad to reach advertiser web site

http://jazoon.com

Project Management

Methods & Tools * Spring 2008 * Page 10

5 Evo basics

We organize Evo projects on several levels. We use the TaskCycle to organize the work, the
DeliveryCycle to organize the Results and TimeLine for making sure we’ll be on time.

5.1 TaskCycles

In the TaskCycle we organize the work. We are checking whether we are doing the right things,
in the right order, to the right level of detail. We are optimizing our estimation, planning and
tracking abilities to better predict the future. We select the highest priority Tasks, never do
lower priority Tasks and never do undefined Tasks. As a practical rule, we plan 2/3 of the
available time and in the remaining 1/3 of the time we do all those things we also have to do in
the project, like small interrupts, helping each other, project meetings and many other things. If
we plan 100% of our available time, we will still do all those other things, and we will never
succeed in what we planned.
TaskCycles take at most one week, in some cases even less. Every Cycle we decide what is
most important to do, how much time it takes to do it completely (we define what completely
means) and then what we can do in the available time. We also decide what we will not do in
this Cycle, because there is no time to do it. Now we can focus all our energy on what we can
do, making us more relaxed and more productive. Some managers fear that planning only 2/3 of
the available time makes people do too little. In practice we see people do more.

5.2 Task Selection Criteria

The following set of Task Selection Criteria proved useful for deciding the priority of Tasks:

• Most important requirements

• Highest risks

• Most educational or supporting things

• Active Synchronization with others outside your project

Remember: Every Cycle delivers a useful, completed Result.

5.3 DeliveryCycles

In the DeliveryCycle we organize Results to be delivered to selected Stakeholders. We are
checking whether we are delivering the right things, in the right order, to the right level of
detail. We are optimizing the requirements and checking our assumptions.

A DeliveryCycle normally takes not more than two weeks. Novice Evo practitioners, almost
without exception, have trouble with the short DeliveryCycle. They think it cannot be done. In
practice we see that, without exception, it always can be done. It just takes practice. One of the
important reasons for the short length of the cycle is that we want to check our (and their)
assumptions before we have done a lot of work that later may prove unnecessary, losing
valuable time. Short DeliveryCycles help us do this with minimum risk and cost.

A common misconception of Deliveries is that people think they always have to deliver to users
or customers. On the contrary, we can deliver to any Stakeholder: the user or customer,
ourselves or any Stakeholder in between. This makes it easier to define Deliveries. However, we
must always optimize Deliveries for optimum feedback: we must check what we are doing right
and what we are still doing wrong.

Project Management

Methods & Tools * Spring 2008 * Page 11

Delivery Selection Criteria

The following set of Delivery Selection Criteria proved useful for deciding the contents of
Deliveries:

• What will generate optimum feedback

• Delivering to eagerly waiting Stakeholders (otherwise, we won’t get optimum feedback)

• Delivering the juiciest, most important Stakeholder values that can be made at the least cost,
to raise the Stakeholder’s interest to provide optimum feedback

• What will make Stakeholders more productive now

Also remember that:

• Every Delivery must have a useful set of values, otherwise the Stakeholders get stuck
(for example, if there is a Copy function, there should also be a Paste function)

• Every Delivery must offer clear incremental value, otherwise the Stakeholders stop
producing feedback

• Every Delivery delivers the smallest clear increment, to get the most rapid and frequent
feedback

If the contents of a Delivery takes more than two weeks, it can be shortened: try harder

deliverytasks

taskstasks

tasks tasks tasks

delivery

deliverytasks

tasks

tasks

tasks

current week TimeLine

Figure 3: Tasks feed Deliveries on the TimeLine

5.5 TimeLine

We use the TimeLine technique to make sure that we will be on time (or even early). A
TimeLine is a line between now and then. Then is any deadline (we also call it FatalDate): End
of Task, End of Delivery, End of sub-project or milestone, or End of Project. A FatalDate is a
commitment to deliver successfully, no excuses. We took the responsibility, so the Result will
simply be there. If it is not, we failed to deliver on time. At the FatalDate, any excuse is
pointless, because you could have known before. The moment you can foresee that, for whatever
reason, you are not going to meet the FatalDate, you could have told the appropriate
Stakeholders and we could have adapted our plans accordingly. Any day later you realize that
you cannot meet the FatalDate, you have a day less to cope with it. If the time is up, there is no
time left. You cannot change history.

Project Management

Methods & Tools * Spring 2008 * Page 12

During a project we constantly monitor where we are now, what the FatalDate is, and constantly
optimize what we should and what we can do in between.

5.6 Tasks, Deliveries and TimeLine

Tasks feed Deliveries (see figure 3). Deliveries create focus for what to do in Tasks. In any
TaskCycle we are working on the current Delivery. Because some Deliveries need more than
two weeks to prepare we may also work on Tasks for future Deliveries. That said, we shouldn’t
start working on future Deliveries too soon, because the longer we work on a Delivery, the more
the world may have changed, so that what we already did has become irrelevant. It really is a
challenge to define Deliveries and to start working on the right Delivery, Just-in-Time.

On the TimeLine we are scheduling Deliveries in the best order to achieve the best Result in the
least time. This is a dynamic process, because we may have to redefine Deliveries based on
experience of the developers, feedback from Stakeholders, and market changes. We are
constantly challenging the order of Deliveries to get the best route to the Result, with the fewest
iterations. We may also have to change the order of Deliveries if somebody crucial for a
Delivery is ill, or is needed temporarily on another project.

6 Evo practice

By collecting the experience of more than twenty-five projects between 2001 and 2004, we have
arrived at several best practices that you can use to start new Evo projects.

These practices do not describe theoretical processes or how someone thinks we should work.
They rather describe what works in day-to-day reality, where we have to cope with human
psychological behavior that is not always as logical as we intuitively assume or might wish were
true. In fact, Evo thrives on reality. Because of this, you can start using these practices
tomorrow and immediately benefit. You don’t have to call it Evo. Result is all that counts. That
is never just “following process”. Result is always measured as customer success at the least
cost.

6.1 TaskCycle planning

At the start of the weekly TaskCycle, this is what we do:

1. Determine the number of hours you have available for this project this TaskCycle

People may work less than the full week. For example, they may take a vacation, follow a
course, visit a dentist or work for more than one project. So we determine the number of
available hours for this project first, because then we know when we can stop adding Tasks.

2. Divide this gross number of available hours into:

• Available Plannable Hours (default 2/3 of gross available hours)

• Available Unplannable Hours (default 1/3 of gross available hours)

We only plan those Tasks that don’t get done unless planned. If you plan, you have time,
and after that time, the Task will be done.

We do not plan Tasks that will get done anyway, even without planning. As a default ratio
we start with 2/3 plannable and 1/3 unplannable time. In many projects this proves to be
realistic. In a 40 hour work week, this means 27 hours plannable time, 13 hours unplannable
time.

Project Management

Methods & Tools * Spring 2008 * Page 13

3. Define Tasks for this cycle, using the Task Selection Criteria

Focus on finding Tasks that are most important now and don’t waste time on less urgent
tasks for the moment. Based on what we learn from current tasks, the definition of later
Tasks could change, so don’t plan too far ahead. Use the Delivery definition to focus on
what to work in the Tasks.

4. Estimate the number of effort hours needed to completely accomplish each Task

We always estimate effort hours. Ask people to estimate in days, and they come up with lead
time (the time between starting and finishing the Task). Ask people to estimate in hours, and
you’ll find that they usually come up with effort (the net time needed for completing the
Task). The reason for keeping effort and lead time separate is that the causes of variation are
different: If effort is incorrectly estimated, it’s a complexity assessment issue. If there is less
time than planned, it’s a time-management issue. Keeping these separate enables us to learn.

Only the person who is going to do the Task is allowed to define the duration of the Task.
Others may not even hint, because this influences the estimator psychologically. If others do
not agree with the estimation, they may only challenge the (perceived) contents of the Task,
never the estimated time itself. Ultimately, when we agree on the requirements of the Task,
the implementer decides how much time he is going to need; otherwise there will be no
commitment to succeed.

5. Split Tasks of more than about 6 hours into smaller Tasks

We split the work into manageable portions. Estimation is not an exact science, so there will
be some variation in the estimates. We are not bound by the exact estimated effort hours. We
are only bound by the Result: at the end of the week, all committed work is done. If one task
takes a bit more and the other a bit less, who cares? If you have several tasks to do, the
variations can cancel out. If you have a massive task of 27 hours, it is more difficult to
estimate and the averaging trick cannot save you any more.

6. Fill the available plannable hours with the most important Tasks

Never select less important Tasks. Always fill the available plannable hours completely.

7. Ascertain that indeed these are the most important Tasks to do and that you are
confident that the work can be done in the estimated time

• Any doubt undermines your commitment, so make sure you can deliver.

• Acknowledge that by accepting the list of tasks for this cycle means accepting the
responsibility towards yourself and your team, and that these tasks will be done,
completely done, at the end of the cycle.

At this point, you will have a list of Tasks that will get done. If you cannot accept the
consequence that some other Tasks will not be done, do something! You could:

• Reconsider the priorities.

• Get additional help to do some of the Tasks for you. Beware, however, that it may cost some
time to transfer the Task to somebody else. If you don’t plan this time, you won’t have time.

• If no alternative is possible, accept reality. Hoping that the impossible will happen will only
postpone the inevitable. The later you choose to do something about it, the less time you
have left to do it. Don’t be an ostrich: in Evo we take our head out of the sand and actively
confront the challenges.

Project Management

Methods & Tools * Spring 2008 * Page 14

Evo Task Administrator tool

In all the projects coached since 2002, we introduced the Evo Task Administrator, or ETA tool,
which is used to administer the Tasks. This MS-Access application can be downloaded free
from www.malotaux.nl/nrm/Evo/ETAF.htm, together with an explanatory text. A screen shot is
shown in figure 4.

Figure 4: Evo Task Administrator tool screen shot

6.3 TaskSheet

We use the TaskSheet to define what “completely accomplished” means. It helps us to check
whether we are going to do exactly what is needed at this moment, not less and not more.

On the TaskSheet we can document:

• The requirements of the Task (Functional: what, Quality: how well, Constraints: what not)

• Task validation: how we are going to establish that the Task’s requirements are met

• The strategy to succeed this Task (planning within the Task, design approach)

• Whatever is still unclear

Before starting with the “real” Task, we ask the Project Manager, the Architect, or a colleague
to review the TaskSheet. This may take only a few minutes, but it can also take more time. The
longer it takes, the more important the review. Most reviews lead to changes in the TaskSheet.
That’s nice, because we will be working more on the right things than we would have otherwise.

Project Management

Methods & Tools * Spring 2008 * Page 15

After the definition of the Task has been changed, or better defined, the Task time estimate
should be reconsidered by the person who is going to execute the Task.

You might be concerned that the TaskSheet takes extra time. Using the TaskSheet doesn’t cost
time. It saves time. Try before you decide. If it ever proves to cost you time, find out why and
act accordingly.

Note: If “completely accomplished” is defined as “first half of larger task finished”, the
TaskSheet should indicate how “first half finished” can be established. Don’t settle for weak,
un-measurable outcomes.

In the Evo Task Administrator (ETA) tool we have incorporated the TaskSheet for each Task, as
shown in figure 4.

TimeBox

The number of effort hours planned for a Task is a TimeBox: this is the time available for
finishing the Task completely, no need to think about it any more. If a Task proves to need more
time than anticipated, don’t just use more time:

• People tend to do more than necessary, so we may be able to do less without doing too little.
The better the requirements of the Task are defined, the more focused you can go straight for
the goal. That’s why we use the TaskSheet.

• If you really cannot finish your task within the TimeBox, first complete the other Tasks.
These were also chosen to have the highest priority: others may be waiting for their results.

• If you have time left after all other Tasks are done, you may still try to complete the Task.

• If the Task really cannot be finished, check:

• What did you do

• What did you not yet do

• What do you still have to do

Then define new Tasks with estimations. These new Tasks may be considered in subsequent
cycles. If the immediate continuation of the Task really seems to be more important than
anything else: use the InterruptProcedure (see below).

Never decide alone that you can use more time than the TimeBox. As soon as you find out that
the Task is going to need more time than you have available, discuss with the Project Manager:
We decided to do this Task, based on the expected outcome (Result) against the expected
estimation (cost). If the Task turns out to cost much more than expected, will the investment still
be worth it? We might not even have started the Task, so the moment you find out, reconsider
the priority: don’t just go on.

6.5 At the end of the Cycle we Check, Act and Plan:

1. Was all planned work really done? If a Task was not completed, we have to learn:

• Was the time spent but the work not done?

This is an effort estimation problem. Discuss what the causes may be and decide how to
change your estimation habits.

Project Management

Methods & Tools * Spring 2008 * Page 16

• Was the time not spent?

This is a time management problem:

• Too much distraction

• Too much time spent on other (poorly-estimated) Tasks

• Too much time spent on unplanned Tasks.

Discuss what the causes may be and decide how to change your time management habits.

2. Conclude unfinished Tasks after having dealt with the consequences:

• Feed the disappointment of “failure” into your intuition mechanism for next time. This is
why commitment is so important: only with commitment we can feel disappointment.
We must use the right psychology to feed our intuition properly.

• Define new Tasks, with estimates, and put them on the Candidate Task List. They will
surface in due time. If they do not surface immediately, we apparently stopped at the
right time. This ensures that we first work on the most important things.

• Declare the Task finished after having taken the consequences: remember that you
cannot work on this Task any more, as it is impossible to do anything in the past.

3. Now continue with planning the Tasks for the next cycle

6.6 Analysis Tasks

If it will take significant time to define or estimate Tasks, we define an Analysis Task. In such a
Task we don’t do anything, we just analyze what we may have to do. At the end of the Analysis
Task we check:

• What we know now

• What we still do not know

• What we still have to know

Then we define new Tasks or Analysis Tasks with estimations. Analysis Tasks get a deliberately
small TimeBox. After, say, 2 hours we probably know a lot more than before starting. So after
the short timebox we can much better define new Tasks or even new Analysis Tasks. By using a
deliberately short timebox, we avoid spending more time than necessary. Analysis Tasks allow
us to explore Requirements or to explore new techniques: we don’t just start, we rather first
analyze.

6.7 Interrupt

We know that requirements may change at any time, but we try to keep them stable during the
TaskCycle. Sometimes, however, there are interruptions during the TaskCycle. For example:
what do you do when the boss comes in and asks you to paint his fence? Or what do you do
when a customer of your previous project reports a bug? In Evo, we don’t immediately do such
things because it’s the boss or a customer. We also don’t immediately reject the request, because
it could be more important than anything else we are doing. However, because interrupts usually
seem more important than they may be, we must never decide to change the plan and execute
the interrupt on our own. Always consult the Project Manager.

If a new task suddenly appears in the middle of a TaskCycle (we call this an Interrupt) we
follow this procedure, based on the principle “We shall work only on planned Tasks”:

Project Management

Methods & Tools * Spring 2008 * Page 17

1. Define the expected Result of the new Task properly

2. Estimate the time needed to perform the new Task, to the level of detail needed

3. Consult the Project Manager, or if unavailable, a colleague. You must seek a second
opinion.

4. Check the Task planning

5. Decide which of the planned Tasks are going to be sacrificed (up to the number of hours
needed for the new Task)

6. Weigh the priorities of the new Task against the Tasks to be sacrificed

7. Decide which is more important

8. If the new Task is more important: replan accordingly

9. If the new Task is not more important, then do not replan and do not work on the new Task.
Of course the new Task may be added to the Candidate Task List

10. Now we are still working on planned Tasks

Small interrupts don’t need the InterruptProcedure, as long as they don’t jeopardize the
completion of all the planned Tasks. Because our life is full of small Interrupts (drinking coffee,
going to the bathroom, telephone calls, helping each other, and much more), we reserve the
unplannable time for these unplannable Interrupts. The InterruptProcedure itself may be handled
as a small Interrupt. If it needs more time, define an Interrupt Analysis Task first.

I know this may seem rather formal and bureaucratic. The only reason why we accept the
bureaucratic rule in this case is because Interrupts are a big risk for the project and must be
handled as such.

6.8 TimeLine

TimeLine is simply a line from Now to Then. We all can apply TimeLine quite well if we have
to catch a plane: We know when the plane leaves and count back the time for checking in, the
time to go to the airport, the time to get dressed and eat. This leads us to how we have to set the
alarm clock the night before to make sure we will catch the plane. We also know that as soon as
we can predict that we are going to miss the plane, we can abort the process even before going
to the airport: we know we will be late, so it’s no use trying any more.

In projects it is not very different, other than that what happens between now and then is a bit
more complicated and a bit less predictable.

We call this technique of making sure we will be on time “TimeLine”. It can be used on any
scale: on a project, on deliveries, on tasks, the technique is always same:

1. Define a deadline or FatalDate. It is better to start with the end: planning beyond the
available time/money budget is useless, so we can stop quicker if we find out that what we
have to do takes way more time than we have.

2. Write down whatever you have to accomplish

3. List in order of priority

4. Write the same down in logical groups of Results

5. List these groups in order of priority

6. Translate the groups into Tasks: what you have to do

Project Management

Methods & Tools * Spring 2008 * Page 18

7. Estimate the Tasks in hours of effort (estimate less urgent tasks in less detail: they will be
done later and hence will probably different from what you think now. Don’t waste time on
irrelevant detail)

8. Cut the most urgent Tasks into work-Tasks of ~6 hrs effort or less

9. Review the order of the list

10. Ask the team to add forgotten tasks and add effort estimates

11. Get consensus on large variations of estimates (use a Delphi process)

12. Add up the number of effort hours

13. Divide by the number of available effort hours: This is the first estimate of the duration

What the customer wants, he cannot afford

The estimate of the duration is usually way beyond the required duration. At least we know
now:

• What, at the FatalDate surely will be done

• What will not be done

• What may be done (estimation is not an exact science)

We also made sure that we plan to work on the most important issues first and the bells and
whistles last.

Now you can discuss this with your customer. If what is surely done is not sufficient for
success, you better stop now, to avoid wasting time and money and to spend it on more
profitable activities.

In the beginning, customers can follow your reasoning, but still want it all. Remember that they
don’t even exactly know what they really want, so “wanting it all” usually is a fallacy, although
you’d better not say that.

What you can say is: “OK, we have two options: In a conventional project, at the fatal day, I
would come to you and tell that we didn’t make it. In this project, however, we have another
option. We already know, so I can tell you now that we will not be able to make it and then we
can discuss what we are going to do about it. Which option shall we choose?”

If you explain it carefully, the customer will, eventually, choose the latter option. He will
grumble a bit the first few weeks. Soon, however, he will forget the whole issue, because what
you deliver is what you promise. This enforces trust. Remember that many customers ask more,
because they expect to get less. He also will get confident: He is getting deliveries way before
he ever expected it. And he will recognize soon that what he asked was not what he needed, so
why bother to getting it “all”.

The very first encounter with a new customer you cannot use this method, telling the customer
that he will not get it all. You competitor will promise to deliver it all (which he won’t,
assuming that you are not less capable than your competitor), so you lose if you don’t tell the
same, just as you did yourself before using Evo. If, after you won the contract, you start working
the Evo way, you will soon get the confidence of your customer and on the next project he will
understand and only want to work with you.

Project Management

Methods & Tools * Spring 2008 * Page 19

6.9 Weekly 3-step procedure

Based on the experience gained, starting with the weekly team meetings we found in most
projects, we arrived at a weekly 3-step process, which proves instrumental for the success of
Evo implementation. In this process we minimize and optimize the time used for organizing the
Evo planning.

The steps are:

1. Individual preparation

In this step the individual team members do what they can do alone:

• Conclude current tasks

• Determine what they think the most important Tasks are for the next week

• Estimate the time needed for these Tasks

• Determine how much time they will have available for the project the coming week

The Project Manager also prepares for his team what he thinks are the most important
Tasks, what he thinks these Tasks may take (based on his own perception of the contents
of each Task and the capabilities of the Individual) and how much time he needs from
every person in the Team.

2. 1-on-1’s: Modulation with and coaching by Project Management

In this step the individual team members meet individually (1-on-1) with Project
Management (Project Manager and/or Architect). In this meeting we modulate on the
results of the Individual preparations:

• We check the status and coach where people did not yet succeed in their intentions

• We compare what the Individual and the Project Management thought to be the most
important Tasks. In case of differences, we discuss until we agree

• We check the feasibility of getting all these Tasks done, based on the estimations

• We iterate until we are satisfied with the set of Tasks for the next cycle, checking for real
commitment. Now we have the work package for the coming cycle.

We use an LCD projector at every meeting, even at the 1-on-1’s. Preferably we use a
computer connected directly to the Intranet, so that we are using the actual files. This is to
ensure that we all are looking at and talking about the same things. If people scribble on
their own paper, they all scribble something different. The others don’t see what you
scribble and cannot correct you if you misunderstand something.

If there is no projector readily available for your project: buy one! The cost of these
projectors nowadays should never be an obstacle: you will recover the cost in a very short
time.

There is not just one scribe. People change place behind the computer depending on the
subject or the document. If the Project Manager writes down the Task descriptions in the
Task database (like the ETA tool), people watch more or less and easily accept what the
Project Manager writes. As soon as people write down their own Task descriptions, you
can see how they tune the words, really thinking of what the words mean. This enhances
the commitment a lot. And the Project Manager can watch and discuss if what is typed is
not the same as what’s in his mind. And when we are connected to the Intranet, the Task
database is immediately up to date and people can even immediately print their individual
Task lists.

Project Management

Methods & Tools * Spring 2008 * Page 20

3. Team meeting: Synchronization with the group

In this step, usually at the end of the day, after all the 1-on-1’s are concluded, we meet
with the whole team. In this meeting we do those things we really need all the people for:

• While the Tasks are listed on the projection screen (as in figure 4), people read aloud
their planned Tasks for the week. This leads to the synergy effect: People say: “If you
are going to do that, we must discuss …”, or “You can’t do that, because …”
Apparently we overlooked something. Now we can discuss what to do about it and
change the plans accordingly. The gain is that we don’t together generate the plans,
we only have to modulate. This saves time.

• If something came up at a 1-on-1 which is important for the group to know, it can be
discussed now. In conventional team meetings we regularly see that we discuss a lot
over the first subject that pops up, leaving no time for the real important subject that
happened to be mentioned later. In the Evo team meetings we select which subject is
most important to discuss together.

• To learn and to socialize.

At every step of the process we try to minimize the number of people involved. First we added
the 1-on-1’s to the process. The aim was to relieve the team meeting from individual status
reporting and from too detailed 1-on-1 discussions. We found, however, that these 1-on-1’s
easily took about one hour each. One Project Manager said: “Niels, with 6 people in my team, I
can just manage in one day. But what would you do if there were 15 people in the team? I want
these meetings to take not more than 30 minutes”. Watching closely what was happening in the
1-on-1’s, we saw that there was a lot of thinking and waiting: “What are you going to do the
next cycle?” Pause for thinking. “What effort do you estimate for this Task?” Pause for
thinking. “How much time do you have for the project this week?” “I don’t know. I have to
discuss with the Project Manager of the other project”. Sigh. Why didn’t you check before the
meeting? Now we cannot decide!

This led to the Individual Preparation step, where people prepare these issues before the
meeting. The result was that the 1-on-1’s went from one hour to 20 minutes. That was much
better than we expected. The reason is probably that now people come to the meeting much
more prepared, needing even less time to get to the point.

Now having optimized the 1-on-1’s, Project Managers invariably say that these 1-on-1’s are one
of the most powerful elements of the Evo approach.

Team meetings usually take not more than 20 minutes. Do we discuss less than before? No, we
just discuss the right things effectively and efficiently.

Conclusion: How Quality is Assured by Evo

Deming said that quality cannot be tested into a product; it has to be designed in from the
beginning. Aren’t we doing just that? In Evo projects we define what Quality is and then we
pursue the defined Quality, constantly optimizing based on what we learn along the way. All the
Quality Assurance people need to do is guide and coach us, watching over our shoulder to
ensure we stay disciplined. Not because we like discipline, but because we like success.

Originally prepared for the Annual Pacific Northwest Software Quality Conference, Portland,
USA, 2004 - Version 1.0f - 24 Jan 2008

Software Process

Methods & Tools * Spring 2008 * Page 21

OpenUP –The Best of Two Worlds

Bjorn Gustafsson bjorn @ goodsoftware.ca
GOOD Software Inc, www.goodsoftware.ca

Abstract

Software organizations looking to adopt an iterative and incremental process have found
themselves left with less than ideal options. While RUP, the IBM Rational Unified Process®,
was the first mainstream iterative software process, its complexity and size makes it difficult to
adopt. Agile processes like Scrum and XP, on the other hand, are leaner, but their different
culture and lack of documentation often meet resistance from management.

This dilemma is perfect soil for the new OpenUP process which packages the best RUP and
agile practices in a light-weight open source process framework. The result makes management
happy, since they get a stable and well-defined governance process, is easy to adopt, and serves
the team a smorgasbord of software best practices right in their web browsers.

This article gives an overview of OpenUP and explains how it relates to both RUP, from which
it received its foundation, and agile methods, from which it incorporates their best practices.

Introduction

Software development today is radically different than it was only ten years ago, and the
software process landscape is changing too. Since its creation ten years ago, RUP [11] has
become the de facto process in many software organizations. With a knowledge base of
thousands of pages it offers guidance to a wide range of industries and systems. However, RUP
is also “complex” and can be difficult to implement in an organization because of its size,
complexity and learning curve.

More recently, enabled and fuelled by new conditions and initiatives in our industry, the Agile
Manifesto [2] established a philosophy in 2001 that brought some ground-breaking new ideas to
the software process landscape, which materialized in methods like XP [3] and Scrum [4]. Even
though replacing RUP never was the primary motivation, ‘agility’ seemed like a good idea to
many, including those that struggled with RUP.

Now, a few years later, we know that agility is not the cure-all for our software process pains,
and software teams still keep failing. “Being agile” requires a change of mindset and attitudes
throughout the whole organization and not all organizations are ready for this cultural change.

Some common problems can be observed in troubled projects:

• The project team doesn’t share a clear vision of how the system will appear to its users.
Without a clear vision of the final system, there is no guiding framework for the work in the
project. The team’s analysts have no means to calibrate their requirements to the scope and
effort of the project, which results in ill-fitting requirements statements; and the
development team can not properly prioritize their work.

• Requirements do not drive development work. Some development cultures regard
requirements as “incidental” input to the project only, and drive the development work
based on other, internal and technical, conditions. This is commonly found in “silo”
organizations where there are separate teams for requirements capture and development.

http://www.goodsoftware.ca/

Software Process

Methods & Tools * Spring 2008 * Page 22

• The system’s architecture has not been articulated. Although projects that only evolve
and maintain existing systems may not need to pay much attention to architecture, there are
many projects that do. As Dean Leffingwell [7] points out: “… how much architecture a
team needs depends in large part on what the team is building”.

• Plans are not connected to the engineering reality. Plans are often created and maintained
separately from the actual project work. We have all seen nebulous Gantt charts that project
managers spent days or even weeks creating, with hundreds of line items in nifty breakdown
structures, purportedly believed to bring the project to “completion” at some well-defined
point in time. Of course, these plans become outdated even before they are pinned on the
wall.

• Risks are ignored. All projects run the risk of building the wrong product or not being able
to build the product as envisioned, yet very few projects acknowledge this uncertainty and
actively try to reduce it.

Whether your process is RUP, agile, or something else, and whether you are a programmer,
architect, designer, tester, analyst or manager, you may recognize these problems in your own
project. If you do, you are not alone. In fact, the majority of software projects are still problem-
riddled.

Why is this?

First and foremost, software development is complex matter and orchestrating dozens or more
individuals to build a complete software system is down-right hard work.

Advertisement – Fast Software Configuration Management - Click on ad to reach advertiser web site

http://www.perforce.com/perforce/camp/Methodsandtools/index.html?referrer=methodsandtools0

Software Process

Methods & Tools * Spring 2008 * Page 23

Every project is unique and most projects have some parameters that just aren’t “ideal” for their
process or they have a less than ideal process.

Many software organizations ask “How can we fix these problems?”

Both RUP and agile methods certainly have the solutions. The problem with RUP, though, is
that they can be hard to find and put to practice; the problem with agile methods is that their
advice and guidance can be difficult to translate to a particular project situation since they are
based on tacit knowledge and textbooks only.

With OpenUP the situation is different. It packs short and concise guidance into a small number
of pages, which are always just a couple of clicks away. Adopting OpenUP takes you a long
way towards solving these and other problems.

Introducing OpenUP and the Eclipse Process Framework

While OpenUP is the tangible process product, it is also part of the larger Eclipse Process
Framework.

“The Eclipse Process Framework (EPF) aims at producing a customizable software process
engineering framework, with exemplary process content and tools, supporting a broad variety
of project types and development styles” [1]

EPF is an open-source initiative that was started in 2006 with contributions by IBM Rational of
parts of their RUP content and technology. Since its inception the project has actively involved
more than 20 companies, and the first release was made available in September of 2007. Despite
being an Eclipse project, EPF can be used to create process descriptions for any type of
development, including J2EE on Eclipse or .NET using Microsoft Visual Studio.

EPF, like other Eclipse projects, offers exemplary implementations of its two components:

Figure 1: OpenUP process Figure 2: EPF Composer

OpenUP is a welcome addition to the software process landscape: it is agile, both in the
guidance it provides and in “spirit”, while at the same time being documented. As Per Kroll, the
EPF project lead states “the overarching goal with OpenUP was to create an agile approach to
using RUP, while at the same time leverage all the good things we liked in other agile
processes.” [6]

OpenUP borrows many strokes from RUP which it blends with agile practices, and the result is
a complete process that suites many smaller-scale projects. It can also be extended for those
projects and organizations that have more challenging circumstances.

Software Process

Methods & Tools * Spring 2008 * Page 24

Even if the OpenUP process is the focal point of EPF, it is only half the story. Much of its value
lies in the fact that it is open source and that it is based on a standardized meta-model, called
SPEM [5].

The advantages of open source are obvious: it can be used by organizations of all sizes at no
cost. It also means that anyone can share best practices in the spirit of open source.

The advantage of being based on a standardized meta-model may not be as obvious, but is key
to the overall success of EPF. Concretely, this makes OpenUP extensible and it can be
augmented with any combination of standard, 3rd-party and proprietary practices. Just like UML
provides a standard language for software design models, SPEM provides a standard language
for definition and exchange of process models. With SPEM, process is expressed as a set of
elements and components, and it is modular as opposed to a monolithic whole.

This is where EPF Composer comes into the picture. It provides the tools both to create new
process content and to tailor OpenUP by selecting the desired set of components. It is a fully-
featured process engineering tool and any organization can use it to develop their own process
best practices, as well as share those with other EPF users.

This is the “grand vision” of EPF: to build an open source community around EPF, where
industry best practices can be downloaded and exchanged. With this first release, this grand
vision is starting to come into existence.

Advertisement – The Best in Requirements Management - Click on ad to reach advertiser web site

Looking for the best in
Requirements Management,

Engineering Information
and Collaboration?

• Web-based interfaces

• Fast response time

• Wide-Area Network optimisation

• Multiple SQL database support

• Multi-platform support

PACE is a true enterprise solution to
capture, analyse, develop, trace and
manage information throughout the
product lifecycle.

Let PACE™ do the Heavy
Lifting for you!

Visit Http://Holagent.co.uk

Telephone: +44 (0)14 9487 1915

http://holagent.co.uk/
http://www.holagent.co.uk/

Software Process

Methods & Tools * Spring 2008 * Page 25

OpenUP – the method

This chapter is intended to give a brief introduction to OpenUP only. There are excellent
resources on the EPF web site [1] for learning more about it. (including downloading and
browsing the OpenUP process itself!)

OpenUP defines a set of roles, work products and tasks:

Figure 3: Overview of OpenUP elements

The process described by these elements is minimal and complete; it is the smallest set of
elements that still describe a project end-to-end.

Analysts formulate the intent of the system in the vision, use cases and supplementary
specification products.

Managing iterative projects is largely a matter of orchestrating the activities of the team through
each iteration, primarily by managing tasks against the current iteration plan. It is populated
with the highest prioritized items from the work items list and risk list, and the team commits to
a certain amount of work in each iteration.

The development team includes architects, developers and testers, who are responsible for the
development of the solution products, which ultimately result in the operational system.

Activity models describe typical task collaborations as they occur in iterations:

Software Process

Methods & Tools * Spring 2008 * Page 26

Figure 4: Example activity model

A lifecycle model provides the governance process for iterations and micro-increments:

Figure 5: OpenUP lifecycle model

If you are a developer your process is the “analyze-code–test–integrate” cycle that you go
through almost on a daily basis, as specified by the tasks in the iteration plan; if you are a
manager, or Scrum Master, your focus is on how the team performs in each iteration, which is
estimated and tracked in the iteration plan; and if you are a project stakeholder, you are focused
on understanding what the project will deliver and when, as described in the project plan.

OpenUP is inherently iterative and incremental and the project is executed over a series of
iterations, typically 2-6 weeks in duration.

Software Process

Methods & Tools * Spring 2008 * Page 27

Figure 6: Iteration lifecycle

Each iteration takes on a subset of the project’s work items. Iterations are started with a short
planning activity where the highest-prioritized items from the work items list and risk list are
allocated to the iteration plan. This is followed by a short activity where the team gets involved
in the detailed planning and estimation of each work item. Thereafter the iteration work
commences and each feature is analyzed, designed, implemented, tested and integrated in its
own micro-increment. As the iteration unfolds, task status is reported back to the iteration plan
for overall project status.

The project lifecycle in Figure 5 identifies four distinct phases, each with a specific purpose and
milestone criteria:
• Inception: define the scope and objectives of the project
• Elaboration: establish an understanding of the requirements and create an executable

architecture for key scenarios and quality demands
• Construction: build the functionality of the system
• Transition: release the system to the end users

This lifecycle model distinguishes OpenUP from agile methods and allows us to focus early
project efforts, in the inception and elaboration phases, on understanding the scope of the
project and its solution before embarking on full-scale development in the construction phase.
At the end of the elaboration phase we have typically spent only 20-25% of the total project
budget over 30-40% of the project schedule.

With this brief introduction, let’s see how OpenUP helps address the specific problems that we
identified earlier:

• A shared vision is created in the inception phase. The stakeholders’ key needs and
features are captured in the Vision document. It describes high-level requirements and
design constraints, and gives an overview of the system’s functional scope.

• All project work is driven by use cases and other requirements. The Work Items List
constitutes a “laundry list” of features, requirements and change requests raised on the
system.

• An executable architecture is created in the elaboration phase. The Architecture
Notebook along with the other development work products represent a base-lined executable
architecture that demonstrates how the system supports the key scenarios and constraints,
and which serves as basis for the ensuing construction phase. It is worth noting that
‘architecture’ is not a separate “thing” – it is the underlying organization and qualities of the
system being built – and the executable architecture is just a state of the underlying design,
implementation and test products. To create the right focus on the architectural concerns we

Software Process

Methods & Tools * Spring 2008 * Page 28

prioritize those use cases and other requirements during the elaboration phase that involve
the highest technical risks, as identified in the risk list.

• Each iteration is planned “just in time”, and the project team is involved in the
detailed estimation and planning activities. For each iteration the Iteration Plan is
populated with the highest-prioritized work items from the work items list and risk list. The
team is responsible for identifying and estimating tasks for each work item.

• Risks are pro-actively identified and mitigated. The Risk List identifies a prioritized list
of risks that are associated with the project. All critical risks have been removed at the end
of the elaboration phase.

OpenUP thus helps us remove some of the main obstacles to project success early in the project
and with only a small investment. The inception and elaboration phases also help establish and
organize the key project work products and processes, so that construction can commence with a
growing team and aggressive timelines with minimum friction.

OpenUP is a web-based knowledge base

OpenUP is installed in your team’s intranet and accessed using regular web browsers. It can be
installed directly from the EPF website or, in the case you wish to create your own tailored
variant, with the help of EPF Composer. If you are familiar with RUP, you will recognize
OpenUP’s content browser and some of its content. If you are not familiar with RUP, you will
find that OpenUP’s two-pane view and content are easy to understand and navigate:

Figure 7: A sample OpenUP page

Software Process

Methods & Tools * Spring 2008 * Page 29

Figure 7 shows a task description and demonstrates the general layout of pages in OpenUP.
Each element (task, role, work product) has a short description and links to its associated
elements.

Each element has guidance attached to it, which further explains and facilitates their use in the
project:

Figure 8: Example of guidance

The process web site provides a complete encyclopedia of your software process, and to
understand OpenUP is a simple matter of browsing the OpenUP web site and studying those
areas that are of immediate concern for the role you are playing in your project and the work
products that you are responsible for.

Tailoring OpenUP to your needs

OpenUP can be tailored and extended using the EPF Composer tool:

Figure 9: EPF Composer

Software Process

Methods & Tools * Spring 2008 * Page 30

It is centered around a form-based editor which allows you to quickly create and modify
content. Your content can be as simple as a couple of additional guidance pages, or it can be as
complex as adding completely new disciplines with new roles, tasks, work products and
activities. You can even build an entirely new process family and ignore the existing OpenUP
content completely. (An interesting example of this is the Scrum process that was developed as
part of the EPF work: it uses the EPF process browser but is completely tailored to Scrum
terminology and concepts)

A simple checkbox interface allows you to integrate your extensions with other OpenUP
components in your own OpenUP variant.

Figure 10: Checkbox selection of OpenUP configuration

Working with OpenUP

Normally, adopting a new software process is a major undertaking, and the transformation of the
project team or organization never happens over night. Once a process has been implemented
and used you want to find ways to improve it and make the organization more efficient. Process
implementation and improvement involves understanding the process, defining it, and training
the team on its practices, and this can take weeks, months or even years.

With OpenUP this is not the case. If you want to use it as-is - which is a good starting point for
any project - you just download it from the web site and install it in your environment. It is self-
contained and provides all the guidance you need to get started. Should you wish to improve the
process from there, for example if your project is using a new technology and you want to add
guidance specific to that technology, you will find it easy and straight-forward with EPF
Composer.

OpenUP has many similarities with RUP, but choosing it is an either-or decision for RUP
projects since they can not really co-exist in the same environment (and it wouldn’t make sense
because of their overlap). A goal with OpenUP was to create an agile process with focus only on
the core software development element. This makes it manageable and easy to grasp.

Adopting OpenUP in agile projects, however, is not an either-or decision. It was designed to fit
seamlessly with the work habits of agile projects. As we have seen, it balances agility with “just
enough” governance, especially in the early stages of the project, to help establish the project
context, fundamental structures and key principles early. Once status quo is reached – that is,

Software Process

Methods & Tools * Spring 2008 * Page 31

when the system has taken shape and the team has found a comfortable iteration pace – OpenUP
is no different than most agile methods.

OpenUP is based on four core principles, all of which have direct correspondence with the Agile
Manifesto:

OpenUP Key Principle Agile Manifesto
Collaborate to align interests and share
understanding

Individuals and interactions over process
and tools

Evolve to continuously obtain feedback and
improve

Responding to change over following a
plan

Balance competing priorities to maximize
stakeholder value

Customer collaboration over contract
negotiation

Focus on articulating the architecture Working software over comprehensive
documentation

If you are used to working in agile projects you will find that OpenUP is no different when it
comes to its underlying values and principles. Nor does it impose a different work style for your
daily activities: you still do the daily stand-up meeting; iterations are planned the same way; you
design, implement and test in small increments.

If you are a Scrum Master you will find striking similarities between the Scrum product backlog
and OpenUP’s work items list, and between the sprint backlog and the iteration plan. This is no
coincidence since the inspiration for those came from Scrum. They are even used the same way
in planning and performing iterations. (and – you can have your 30 day iterations too!) If you
are a RUP project manager you will find that the process around the work items list and iteration
plan is tangible and easy to manage.

OpenUP uses ‘use cases’ as envelope for requirements, but that doesn’t preclude the use of user
stories as a means to solicit feedback on the evolving system. Use cases and user stories are
quite similar in nature, although use cases are coarser-grained than user stories are normally,
and they come about in a more pro-active way.

As we have already seen, OpenUP acknowledges the value of architecture and regards it as an
intentional property of the system. However, it doesn’t treat it as a “large big up-front design” of
the whole system. On the contrary, the activity of establishing the architecture is light-weight
and focused on a small, central subset of the system’s requirements and main constraints and
objectives. This, too, is an iterative and incremental activity that occurs in each iteration,
primarily during the inception and elaboration phases, in parallel with other project activities.

Of course, the approach to architecture taken by a particular project shall be determined by the
circumstance of that project – the more complex and critical the project is, the more important
becomes the architecture, and the more pro-active should the formulation of the architecture be.

The future of OpenUP

Like many other open source projects, OpenUP evolve in the direction set by the user
community, so what the longer-term future has in stock for us is unclear.

We can rest assured though that, contrary to RUP and other proprietary processes, OpenUP will
grow to include the practices most useful to the larger number of people in the software
community.

Software Process

Methods & Tools * Spring 2008 * Page 32

Short-term, taking a quick peek behind the ”development curtain”, we see work currently being
done to add the concept of ‘practices’ as primary building block, to replace the coarser-grained
‘method plug-in’ concept. This directly benefits all stakeholders of EPF and OpenUP, and
ultimately serves you, the project member, with a more to-the-point process.

Other initiatives are integrating Wiki technology into EPF, to make augmenting and modifying
process even easier.

Even if EPF is still young there are already integrations with project management tools
available:

• Iris, Osellus Inc [10] (commercial)

• ProjectKoach, GOOD Software Inc [8] (free)

• Wilos project [12] (open source)

Also worth noting is that the future IBM Jazz [9] project incorporates EPF as one of its core
components.

Summary

The new OpenUP process synthesizes the best practices from RUP and Agile methods into a
light-weight and agile alternative to both. Given its RUP roots, it provides a process that is
iterative and incremental, use-case driven, risk-driven, and architecture-centric, which at the
same time supports the work habits of agile projects.

The OpenUP process features practices suitable for many projects right out-of-the-box, but it
also provides the basis for adding 3rd party and proprietary practice extensions, using the EPF
Composer tool, to tailor the most appropriate process for each project.

If you haven’t looked at OpenUP yet, I invite you to take a closer look at the EPF website [1]
where you find more information and downloads.

References

[1] Eclipse Process Framework main web site www.eclipse.org/epf
[2] Agile Manifesto http://agilemanifesto.org/
[3] XP Extreme Programming http://www.extremeprogramming.org/
[4] Ken Schwaber and Mike Beedle Agile Software Development with SCRUM,

Prentice Hall 2001
[5] SPEM specification http://www.omg.org/cgi-bin/doc?ptc/07-11-01
[6] Per Kroll OpenUP in a nutshell

http://www.ibm.com/developerworks/rational/library/sep07/kroll/index.html
[7] Dean Leffingwell Scaling Software Agility, Addison-Wesley 2007

 http://www.leffingwell.org/ssa.html
[8] ProjectKoach project management tool www.projectkoach.com

(GOOD Software Inc)
[9] https://jazz.net
[10] Iris process enactment tool www.osellus.com (Osellus Inc)
[11] Philippe Kruchten The Rational Unified Process, an introduction 2nd Ed.

Addison-Wesley 2000
[12] Wilos open source project (http://www.wilos-project.org)

http://www.eclipse.org/epf
http://agilemanifesto.org/
http://www.extremeprogramming.org/
http://www.omg.org/cgi-bin/doc?ptc/07-11-01
http://www.ibm.com/developerworks/
http://www.leffingwell.org/ssa.html
http://www.projectkoach.com/
https://jazz.net/
http://www.osellus.com/
http://www.wilos-project.org/

Requirements Management

Methods & Tools * Spring 2008 * Page 33

Real Reuse for Requirements

Doug Akers, doug.akers @ mks.com
MKS Inc., www.mks.com

Introduction

A telecommunications company in a hotly competitive market needs to deliver the next
generation of cell phone to its customers quickly, and at the lowest possible cost. The company
wants to adopt a baseline set of requirements for the next generation project, but must make
necessary modifications to leap ahead of the competition.

An automotive supplier must produce embedded software components consistently and reliably
for its OEM clients. To do so, the supplier’s development process must account for the slight
variations required by each manufacturer.

Requirements reuse provides organizations, like those illustrated in the scenarios above, with
the unique ability to share a requirement across projects without absorbing unnecessary
duplication of artifacts within a repository. This is a critical capability that accelerates time to
market and cuts development costs. Shared requirements can either track to the ongoing change
made by the author or they can remain static if the needs of the project dictate. Further, change
to a shared requirement can be made by anyone and the system handles the branching and
evolution of that requirement appropriately.

The concept of reuse is a familiar notion within the software development realm, but less
common when considered in the field of requirements management. There are various
definitions and use cases which must be taken into consideration when implementing a solution
to address requirements reuse.

This article discusses the elements that make up a requirement and establishes common
understanding of how requirements evolve, how that evolution is retained, and how
organizations can reuse requirements to speed business innovation, reduce complexity and
control costs.

Dissecting a Requirement

To understand the concept of requirements reuse, we must first look at the various parts of a
requirement: data, metadata and relationships.

Data
Describes an object, and is relevant to the object itself. An example of data may be a summary
or description of a requirement.

Metadata
This is data about the data, which aids in organizing or using the object within a process. It
typically describes the current state of the object, and has the same scope as the data itself. For
instance, metadata may describe the State/Stage within a requirement workflow (i.e., Approved,
Rejected, Satisfied, and Tested).

www.mks.com

Requirements Management

Methods & Tools * Spring 2008 * Page 34

Relationships
This characteristic of a requirement allows you to model:

• structure (i.e., Consists Of, Includes);

• history (i.e., Revision Of, Derived From);

• conceptual links or traces (i.e., Satisfies);

• references (i.e., Defined By, Decomposes To);

• security (i.e., Authorized By, Enables).

Any given requirement can have information in each of the data, metadata and relationships
categories. When requirements are reused, any or all of the information can also be reused.

An organization’s chosen requirements management tool needs to have an underlying
architecture and the user capabilities that support the strategic level of reuse dictated by the
demands of the organization. Since reuse can occur at a number of different levels by leveraging
the data, metadata and relationship elements of a requirement, flexibility is also critical to
solving the reuse challenge.

History, Versions and Baselines

When implementing a complex reuse scenario, or even a system where requirements persist
release after release, one must be able to identify significant points in that requirement’s
evolution. In the development world, these significant points are called “versions.”

Advertisement – Software Test & Performance Conference - Click on ad to reach advertiser web site

http://www.stpcon.com

Requirements Management

Methods & Tools * Spring 2008 * Page 35

This term may mean different things to different people, so we will begin with a definition of
the term “version” as it applies to requirements reuse and show how it relates to similar terms
like history, baselines and milestones.

Consider a system where requirements are captured within requirements documents but are
stored as individual items within the repository.

History is the term used to describe the audit trail for an individual item or requirement. All
changes made to the item, whether it is to data, metadata or its relationships are captured in its
history. History answers to the who, when and what questions with respect to changes to that
item.

Version represents a meaningful point in an individual item’s history. Not all changes to an
item are significant and warrant a new version of the item. For example, the reassignment of a
requirement from Nigel to Julia would not require a specific version identifier. The change is
recorded to the item’s history, but a new version is not created.

Baseline is a very similar concept to version but has a much different scope. Individual items
are often organized into groups or sets. In the requirements management domain these sets are
called documents and a baseline is a meaningful point in a document’s history. Some
organizations use a slightly different definition for baseline. Rather than being a snapshot in
time for a given document, a baseline, as defined here in the context of requirements reuse, is a
goal to work towards. For the purposes of this discussion we will call the goal-oriented baseline
a milestone in order to distinguish between the two.

Requirements management claims to allow for the versioning of individual requirements. Many
tools support versioning by way of cloning or copying the entire requirement. Even fewer
solutions relate the copy to the original requirement.

Although related, versioning and reuse are not the same. The concepts of versioning are often
confused with that of reuse. In the next section, we will explore various reuse scenarios to
illustrate the differences (and the benefits) of versioning and reuse.

Reuse or Not Reuse? – The Many Flavors of Requirements Reuse

Requirements Reuse without Reuse – Share

The ability to share an item between projects, documents or other work efforts could be
considered a form of reuse. Under this definition all of the projects that are sharing the item see,
and can possibly even contribute to, the evolution of the item. The metadata on the item is
shared as are all the relationships and the data.

This is not real reuse. I question whether to call this reuse at all, but it is included here for
completeness.

Requirements Reuse without Heritage – Copy

As mentioned previously, copying an object from one place to another can also be considered a
form of reuse. In fact, this is the form of reuse that Microsoft Word (or any other non-
Requirements Management tool) supports.

Requirements Management

Methods & Tools * Spring 2008 * Page 36

Advertisement – StarEast Software Testing Conference - Click on ad to reach advertiser web site

http://www.sqe.com/go?SE08MTfullad

Requirements Management

Methods & Tools * Spring 2008 * Page 37

When an analyst opens a document, selects some content and performs a copy/paste gesture into
another document, they are reusing that content for a new purpose. This form of reuse has no
knowledge of heritage or “where did I come from” and of course changes in one document have
no impact on changes in the other. In fact, changes are completely independent and one
document has no knowledge that change occurred in the other, let alone what the change might
have been.

This is also not real reuse. Any flavor of reuse must minimally include a pointer to where the
original content came from.

Requirements Reuse with Heritage

Given the above scenarios, let us assume you can answer the “where did I come from” question.
Augmenting the copy with the pointer back to its origin provides several options for reuse. It is
the manner in which this link is leveraged that will differentiate each of the following reuse
models. Most RM tools available today have some notion of links or relationships – if not at the
individual requirement level, at the document level. Document level links are better than
nothing, but they are not very powerful. In the long run, they don’t really answer the traceability
question in sufficient detail to be meaningful.

Having a link to an item’s origin is the start of real reuse though it is certainly not the end.

Requirements Reuse with Change Notification

In this situation, a requirement and all related information (data, metadata and relationships), is
reused in its entirety. Project state determines the state of the requirements at the time of reuse,
and any change to requirements in a reuse scenario causes a ripple effect, flagging all artifacts
related to those requirements as suspect.

Requirements Reuse with Change Control

Reuse with Change Control is similar to Reuse with Change Notification in that data, metadata
and relationships are reused in their entirety. This seems, and in fact is, the same as the Share
topic discussed above, however, there is one significant difference; the two projects sharing the
same requirement only share it until the point in time where one project needs to change it.
When the information changes a new version/branch is created and only items referencing that
new version are declared suspect. All other projects or documents are unaffected.

Requirements Reuse with Annotations

In the two reuse paradigms above, the requirements and related information (data, metadata, and
relationships) are reused in their entirety. In Reuse with Annotations, only some of the
information belonging to a requirement is identified as a candidate for sharing and reuse. The
rest of the information is specific to the project or document. The shared information is held in
the repository while the other information belongs to the project or document reference. Each
instance of the requirement being reused has its own metadata and relationships. The project or
document state is, or can be, independent of the state of the requirements that are contained
within it. New versions of the requirement are automatically created when the shared
information in the repository is changed. These changes that trigger new revisions can suspect
other references, as well as other items in the system, by the ripple effect of that change. For
example, changes to requirements may affect test cases or functional specifications downstream.

Requirements Management

Methods & Tools * Spring 2008 * Page 38

Once you have project or document independence in terms of the metadata, you have the ability
to model both a dynamic (share) and static (reuse) form of reuse at the same time. The project
manager or analyst decides if they want to remain consistent with the evolving requirement in a
dynamic way or if they want to lock the requirement down such that the impact of change does
not affect their project.

Requirements Reuse with Annotations and Change Management

Applying change and configuration management paradigms onto the requirements management
discipline in a single integrated and traceable solution can bring the power of reuse to a new
level. By incorporating a process on top of reuse and controlling how and when requirements
can be modified and reused enables you to reap these benefits without unnecessarily branching
and versioning objects unless it is authorized and appropriate to do so. Requests for Change
(RFCs) come in, get filtered and are directed by various review boards. Some of these RFCs get
approved and assigned to users to affect the requested changes. Ideally, this change management
process can define what types of changes can be made; whether it is modification, branching,
applying a baseline or other gestures. Only when an approved RFC is associated with a
requirement can an analyst modify the requirement, causing the system to version and branch
accordingly, and notifying the related constituents appropriately.

There are clearly, additional reuse models that are not described herein – Component level
reuse, documents reuse and various combinations of these with annotations and change
management for example. This paper provides only a sampling. The business needs and
strategic goals within the group, business unit or business as a whole will help determine which
model is most effective for the project or organization.

Is Requirements Reuse Right For Your Organization?

Requirements reuse is not for everyone. There is a broad spectrum of need in terms of
requirements management tooling in the market today, and organizations first need to know
where they lie on the requirements maturity curve. The requirements maturity curve is not really
a curve at all but a measurement of the current process and tools used and/or needed within an
organization when it comes to requirements management. As organizations evolve along the
curve, the need for more capabilities – such as change management, process and workflow,
traceability, reuse, etc. – within their requirements management framework exists.

Many companies are still in the infancy of requirements management. They have not yet
adopted a requirements management tool, and are currently using business productivity
applications such as Microsoft Word or Microsoft Excel to capture and track requirements.
They may look for capabilities such as ease of document import, rich text support, and
downstream traceability to ease business adoption. These organizations are not yet at a point of
requirements sophistication where reuse support is necessary – or maybe they are but have not
found a tool to support their needs.

Requirements Management

Methods & Tools * Spring 2008 * Page 39

However, if an organization has progressed on the maturity curve with respect to requirements
management, and is managing multiple projects and thousands of requirements in parallel and
seeking to reduce complexity, lower cost of development, and shorten innovation cycles, then
requirements reuse is a concept that should be investigated.

Let’s face it, regardless of where an organization falls on the curve, reuse in its most basic form
will provide a boost to productivity. Rather than re-writing requirements, copy them and modify
them for the needs of each project – you will save keystrokes as well as leverage the structure
and organization these requirements were managed under in the past. After all, how many
different ways can the requirements for logging in to an application be specified really? Ok,
likely quite a number, but within any one organization the need to standardize and streamline
application access exists and leveraging requirements from one application to another to provide
this similar type of functionality can only be a good thing.

In any case, concentrate on the problem domain before jumping into the question “is
requirements reuse right for me?” What challenges is the organization facing in terms of
requirements management? Here is a list of sample questions an organization can ask to
determine if reuse is a concept that could be leveraged and if it is, which flavor of reuse is best
suited to the need.

• How do you know you have captured all the requirements from your customer and the
business? (Authoring)

• How do your project teams leverage work done by other projects? (Reuse)

• How do you verify that each and every change made to software systems track directly to its
business requirement? (Traceability)

• How do product variations get tracked? (Reuse)

• Have requirements changed, been removed or added in the last month? How can you tell?
(Change Management)

• How do you assess the impact of changed requirements on development schedules and
resourcing? (Impact Analysis)

• Can you assess the effect on other projects sharing and/or reusing these requirements?
(Reuse)

Chances are good that any given organization will have difficulty answering more than one of
the above questions and that being the case a well defined requirements management process
with the support of a tool that embodies effective authoring, traceability, change management
and reuse while also providing similar capabilities to manage downstream activities like test
management and software change and configuration management will enable greater control
and agility over software projects.

All that is left to do, as if it is as easy as that, is to determine the business value associated with
solving these challenges and what priority do these solutions have within the organization.
Reuse may not be part of the short term strategy but successful strategic companies invest in the
future and that means a process and a tool framework that will grow with the organization as it
matures over time.

Requirements Management

Methods & Tools * Spring 2008 * Page 40

Additional Resources

Software Product Lines – Reuse that Makes Business Sense
http://www.sei.cmu.edu/productlines/ASWEC2006.pdf

Requirements Reuse and Feature Interaction Management
http://www2.enel.ucalgary.ca/People/eberlein/publications/FI_ICSSEA2002.pdf

Requirements Evolution and Reuse Using the Systems Engineering Process Activities (SEPA)
http://journals.sfu.ca/acs/index.php/ajis/article/view/294

Webinar: Increasing the Agility of Your Software Organization with Requirements Reuse
http://www.mks.com/mt-requirements-reuse

http://www.sei.cmu.edu/productlines/ASWEC2006.pdf
http://www2.enel.ucalgary.ca/People/eberlein/publications/FI_ICSSEA2002.pdf
http://journals.sfu.ca/acs/index.php/ajis/article/view/294
http://www.mks.com/mt-requirements-reuse

Agile Software Development

Methods & Tools * Spring 2008 * Page 41

Creating an Agile Environment
Gregory S. Smith. This article is based on a chapter from "Becoming Agile"

www.manning.com/smith

A few months ago I was contacted by a friend with a problem. The year was coming to an end
and he had let a compliance project slip through the cracks. The compliance deadline was year
end which was a mere 5 weeks away. Failure to comply could mean serious government
repercussions to his company. My friend asked for help in creating an Agile team and doing an
Agile project in the following 5 weeks.

This would be a great time to tout how Agile came in and saved the day but that would be a lie.
I did help my friend prioritize his work and make the deadline, and we did follow some Agile
principles along the way, but we did not put an Agile team or process in place.

Why didn’t we put an Agile team in place and follow an Agile framework? Because it takes
time. Teams need time to feel comfortable with Agile processes and they need time to learn how
to interact with each other. Managers need time to learn how to lead in an Agile environment.
The team needs to use an Agile process for several months, then major benefits will begin to
manifest.

Migrating to Agile is more than changing your process. It also requires a change in culture. For
most companies changing culture is the most difficult part. I believe this is true for several
reasons. Here are a few:

• Whether successful or not, companies get comfortable with their processes.

• Many people still believe requirements change because they are poorly managed. They
cannot comprehend a process that embraces change.

• Most managers have been trained to control events. Empowering the development team to
deliver and own the project is not intuitive or logical.

• Job protection. In larger companies whole groups are dedicated to regulating and overseeing
projects. An Agile team has less need for these services.

There are numerous other reasons but I believe these are at the center of the issue.

These issues should be addressed in two ways. First, you want to address the culture needs of
each group head on. We will lay out a game plan for obtaining support from line management,
the team, the individual and executive management.

If you work in a smaller company

If you are in a smaller company you may not have all of the organization levels discussed in this
article. That is a good thing. You should find it easier to create an Agile culture because you are
fighting your competition on a daily basis. You will obtain the most value by reading the
sections related to creating an Agile team and addressing the needs of the individual.

Second, you want to address this problem by establishing practices that foster an Agile culture.
Practices such as high customer involvement, testing early, and collaborative decision making
will promote an Agile mentality throughout the company.

Agile Software Development

Methods & Tools * Spring 2008 * Page 42

Figure 1. An Agile culture is established when the 3 major groups come together within a
company. Executive management endorses the Agile principles, working managers learn to
coach instead of direct, and the project team understands and supports Agile principles and
practices.

This article will conclude by initiating our case study. We will get to know some of the people
at Acme Media and see how they kick off their move to a more Agile process. We will create
the Core Team and give them responsibility for learning Agile principles, then applying those
principles to the tailoring of an Agile methodology for your Acme. The core team concept also
helps with the cultural aspects of migration by involving project team members immediately.

The information in this article establishes the foundation that allows an Agile process to thrive.
Similar to software development, if you get a good foundation in place it makes everything else
easier to do. If you do not you will fight the foundation with every change you make. Let’s look
at the skills required of an Agile manager.

The Agile manager—more shepherding less directing

Do you remember a commercial for a company named BASF a few years ago? Their slogan was
‘We don't make a lot of the products you buy. We make a lot of the products you buy better’.
This is true of the Agile manager. An Agile manager will never write a line of code, never
document any requirements, or test a feature. What an Agile manager will do is:

• Help the development team track true status

• Encourage the automation of redundant, repeatable tests

• Mentor the team on Agile processes and demonstrate the value.

• Help the team break the work into small chunks that can be delivered quickly.

• Ensure the work being delivered is in tune with the customer need.

An Agile manager provides leadership without using formal power. Instead the manager
leverages the respect they earn from the team as they establish a history of working together to
successful delivery of projects.

Agile Software Development

Methods & Tools * Spring 2008 * Page 43

What does a manager need to do to establish a record of successful project delivery? Let’s start
with the soft skills.

The soft skills

If you look up “soft skills” on the United States Air Force website you will find, “A set of skills
that influence how we interact with each other. It includes such abilities as effective
communication, creativity, analytical thinking, diplomacy, flexibility, change-readiness, and
problem solving, leadership, team building, and listening skills.”

This definition is an excellent prescription for the behaviors an Agile manager needs to
subscribe to.

• Effective communication to ensure the team is synchronized on information.

• Analytical thinking to help the team brainstorm solutions when a challenge is encountered.

• Diplomacy skills to ensure tactful communications that do not offend or touch upon
sensitivities.

• Great listening skills to not only ensure accurate understanding, but also to enhance
relationships with others.

Advertisement – Agile 2008 Conference - Click on ad to reach advertiser web site

http://www.agile2008.org/

Agile Software Development

Methods & Tools * Spring 2008 * Page 44

In summary, behaving in a way to enhance human relations.

Figure 2. An Agile leader brings their soft skills together to “shepherd” the team versus
directing them.

Diane Ehrlich, Ph. D in the Human Resource Development program at the University of Illinois
defines soft skills as “The Skills needed to perform jobs where job requirements are defined in
terms of expected outcomes, but the process(es) to achieve the outcomes may vary widely.”
This is a good description for Agile development in general. You have a desired output, a
project, and the way to achieve that output varies wildly depending on the specific needs of the
project. Now let’s discuss where the soft skills are used.

Working with other managers

A project manager is usually leading a group of people that are not his or her direct reports. As
mentioned before, your job is to earn the respect of team so they will follow you regardless of
your express authority. In order to do this you also need to have the respect of the line managers
who own the resources. The key is to ensure the line managers have bought into Agile concepts
before you ask the team to.

Some level of training needs to occur within the line managers before an Agile migration is
pursued. This training can come from any resource, internal or external, but during this training
managers need to normalize on their support of the principles. You do not want to ask the
manager’s directs to buy-in to the process before the managers have.

You also need to consider roles when working with other managers. Although everyone is
flexible in the tasks they perform in an Agile environment, there will be areas of responsibility
for everyone.

Consider the development team. The development manager usually acts as a technical mentor
and also assigns tasks to the development team. Historically the development manager may have
been in charge of reporting status for the development team.

Agile Software Development

Methods & Tools * Spring 2008 * Page 45

In an Agile environment there is a 10 minute daily stand-up meeting for the whole team to
discuss what they did, what they will do, and any roadblocks they have encountered. This
meeting may be facilitated by the project manager or it may be facilitated by a development
manager. These types of decisions should be worked out with managers in advance of deploying
Agile.

Working with stakeholders

Another group that will be vital to your project success is the stakeholders. Stakeholders are
defined as those who have interest or influence on the project. Typical stakeholders include
senior management and indirect customers such as: support teams, maintenance teams, help
desks, 3rd parties that integrate with the system, and other related product groups within the
company.

In effect, stakeholders are another type of customer. They have their own needs that they want
addressed by the project. To ensure successful delivery of your project you will need to
integrate their requirements into a unified design.

All of the soft skills mentioned earlier are useful when working with stakeholders. The
stakeholders may not be the main customers of the project, but you want them to feel valued.
You want to demonstrate good listening skills and make sure they know that you understand
their needs. You also need to demonstrate diplomacy and not upset the stakeholders by
consciously providing information in a way that will inflame or incite them. For example, you
do not want to demonstrate good listening skills and then immediately tell them that other
stakeholders do not support their needs.

Demonstrate the value

The most important role of the Agile manager is to exemplify the Agile principles and live them
daily. If you want the team to follow you, you must provide a strong example. There are
numerous principles to emulate and follow. Here are the ones that provide the most impact.

“Just enough” planning

In traditional project management you identify features and then specify their requirements.
Typically an analyst wants to answer every question possible in the specification so the
development process will not be impeded by a missing requirement.

In Agile planning you want to plan “just enough”. Just enough planning to determine which
features you want to build. Just enough coding to demonstrate the feature to the customer and
verify that you are on track.

This is one of the hardest habits to break with a traditional team and the Agile manager needs to
champion this mentality on a daily basis. The manager can also emulate this behavior by
creating project plans the same way. A plan that has just enough information to get to the next
level of the project, not a complete work breakdown structure before development has even
begun.

Agile Software Development

Methods & Tools * Spring 2008 * Page 46

Always ready to stop, drop, and deliver

Agile development is performed in iterations to enhance urgency and to support early delivery
of the most valuable functionality. The project manager needs to infuse this mentality into the
project team.

The project manager gets the team to put the same urgency around an iteration as they do with a
project deployment deadline.

Unrelenting pursuit of customer value

An Agile manager is always thinking about the customer and their needs. All other
measurements of a project are meaningless if the product delivered is of no use to the customer.
There are 3 steps to ensuring the customer’s needs are addressed:

1. Clearly define the customer(s). Many projects get underway with a light understanding of
who their customer is. Make sure your customers are clearly defined and their specific needs
are clear.

2. Develop a relationship with the customer. Get to know them well and integrate them into the
project team. Use your soft skills to collaborate with the customer frequently and make sure
they can be easily accessed by the team.

3. Be an advocate for the customer at all times. When features are being discussed and the
customer is not present, put the customer hat on and envision what their response would be
to the discussion. Share those thoughts with the team.

Ensuring technical excellence

The technical skill set of Agile managers vary. A manager can come from a classic PMI
background, be a former developer, or have worked as a business analyst in the past. Regardless
of the technical knowledge all Agile managers can push the team to pursue technical processes
that embed Agile beliefs. Here are some of the best practices for obtaining technical excellence:

• Create a process for continuous code integration. As functionality is completed, developers
integrate their work into the existing code base. The key is to integrate as small pieces of
functionality are completed as opposed to waiting for a complete feature. This practice
identifies code issues early and minimizing the complexity of tracing down issues.

• Automate testing wherever possible. Work with the team to automate testing wherever
possible. This is usually easiest to do with regression testing. You can also automate daily
smoke tests to speed up testing.

• Perform a daily build/smoke test. Related to automated testing, a daily build also helps
mitigate risk by identifying code issues early. The daily test focuses on ensuring the critical
pieces of the application are still functional.

• Consider scalability. As an application is being developed the team should consider future
growth. What will happen if the application is extremely popular and usage exceeds
expected volumes? The team can consider scalability as they design and ensure the design
can be “scaled” easily if needed.

Agile Software Development

Methods & Tools * Spring 2008 * Page 47

Advertisement – Better Software Conference - Click on ad to reach advertiser web site

http://www.sqe.com/go?BSCE08MTfullad

Agile Software Development

Methods & Tools * Spring 2008 * Page 48

A great collaborator, communicator, and relationship builder

Agile is as much a team culture as it is a software development methodology. It is a culture of
frequent conversation and consensus building. It is face to face interaction on a daily basis. The
Agile manager needs to emulate the correct behavior to ensure positive results from the frequent
meetings and daily decisions.

The correct behavior begins with checking your ego at the door when you walk into the office.
There will be intense discussions in an Agile environment and the process will break down if
you take criticism of your ideas as criticism of yourself. Demonstrate this to the team by never
getting upset (at least visibly) during subject discussions that you are passionate about. Share
your thoughts with passion, but expect and embrace criticism of your ideas. The team will adopt
this behavior if you model it consistently.

Another key behavior is how to interact with those outside of the direct project team. These
groups can be vendors, stakeholders, other departments, and sometimes customers. If you show
respect in your interactions with these groups the team will too.

It is natural to talk poorly about others outside the team. “That stupid department we work with
that does not do Agile”, “that idiot vendor whose system always goes down”, “that dumb
customer who can never make up their mind”. You will always have this at some level at your
work. The goal is to not let it get out of hand, where it exceeds venting and proceeds to a truly
poor relationship.

Leading the team to ownership

In 1998 Arthur Andersen published a book by the name of "Best Practices, Building Your
Business with Customer Focused Solutions". One of the best practices outlined in the book was
the ABO Continuum. The continuum identified a vital element in introducing change to an
organization, ensuring ownership of the change.

The continuum promotes the belief that organizational change goes through three steps;
awareness, buy-in, and ultimately ownership.

In the awareness phase information about the change is shared early and informally. For
example, during a team meeting a manager could say “the executives are discussing
improvements for our development process”. The manager could also add in when he thinks he
will hear more and see what the team reaction is.

The value is not so much in what is said, but when it is said. Every individual has their own
timeframe for evaluating a change. The earlier you can make a group aware of a potential
change the better your chances of getting them to “buy-into” the change when you are ready to
roll it out.

The buy-in phase occurs when you roll-out the change and begin implementing it. Awareness
has been created and you are looking for the team to consider the change and to use it with your
guidance.

In the ownership phase the team has tried the change, begun to believe in it, and adopted it as a
standard practice. They do not need management to encourage them to use it. They believe in it
and will use it without being prodded.

Agile Software Development

Methods & Tools * Spring 2008 * Page 49

The ABO Continuum is a great approach for rolling out an Agile methodology. Partner with
your executive team during rollout and process to minimize pain in your migration.

“The Scrummaster”

Scrum has become one of the most popular Agile packaged methods. The Scrummaster is at the
heart of Scrum. This individual is not a manager but more of a process facilitator and guide. A
Scrummaster:

• Helps the team develop practices that support Agile principles

• Acts as a guide in training the team on how to be Agile and use Scrum

• Removes impediments that prevent the team from delivering software

• Shields the team from corporate bureaucracy and activities that do not add value to software
development

• Champions engineering excellence and processes that support the creation of shippable
software

• Ensures the team has direct access to the customer

I believe Scrum is a good Agile method, especially when there is urgency to establish a
development process quickly in an immature organization. However, I struggle with the depth
of responsibilities assigned to the Scrummaster.

My opinion is driven by something I learned when I became certified as a Scrummaster. My
Scrum teacher told me that Scrummasters are the key to Scrum’s ability to transform the
organization. He also told me that Scrummasters are responsible for team health. Initially I liked
this thought. It is great to know I have an expert holding my hand and coaching me along the
way as I go down the Scrum path to an Agile process.

Over time I have started disliking the thought of one person with so much responsibility. In my
experience there has been shared ownership across the leads and managers when we migrated to
Agile. There were definite Agile experts on my teams, and we frequently asked those experts for
guidance, but we never asked the experts to own the process or team health. We did this
collaboratively as a leadership team.

I have found this method successful because we do get expert opinion, but we do not relinquish
ownership of the process to one person. In my experience this co-ownership leads to an Agile
process that is better adhered to because it was created together. Now that we have outlined a
process for obtaining management support, let’s discuss a process for getting the team to buy
into Agile.

The project team

An Agile team is different from the average development group. Team members come across as
poised and ready for where ever the project may lead them. An Agile team member does not
fear uncertainty. They look forward to the challenge and they know they will succeed.

Where does this air of self-assurance come from? Is the attitude reflective of the type of people
that were hired? Or is it reflective of the processes that are being used? Is the attitude a
byproduct of executive support? Does the confidence come for a history of successful
deliveries?

Agile Software Development

Methods & Tools * Spring 2008 * Page 50

The answer to all of the questions above is yes. Each of the items described above supports the
effectiveness and self-reliance that is inherent in an Agile team. In some ways creating an Agile
team is like baking a cake. You can obtain the ingredients exactly as the recipe requests. You
can bake at the suggested temperature. You can let the cake cool the specified time before
applying the icing. But what happens if you are at high altitude and you forget to make the
necessary adjustments? The cake rises too quickly and then turns out too dry. Or what if
someone jumps up and down in the kitchen while the cake is baking? The cake collapses and
never rises.

Next I will give you the ingredients for creating your Agile team.

Culture and roles

I find it hard to describe Agile team culture in a sentence, but I can easily describe it with
several words. The words that come to mind are: collaborative, open, passionate, courageous,
honest, light-hearted, driven, synchronized, customer focused, funny, responsible, innovative,
and successful.

The culture is one of low politics and high transparency. Words are honest but not abrasive.
Status is discussed in matter-of-fact terms. The team focuses on the situation, not the person.
Estimates are honest. There is no padding to make the work easier to do. There is no lying about
how long it will take to appease management.

Another nuance of an Agile environment is the roles that team members play. Except for the use
of Scrum, Agile does not specify what team member roles should be. In my experience this has
not been an issue. The teams I have worked with did not change their roles after they migrated
to Agile. We still had developers, testers, project managers, product managers, customers,
DBAs, and Operations.

What did change for those teams was attitude. After we migrated to Agile I rarely heard a team
member saying something like “development is not responsible for that” or “quality determines
when the code is acceptable”. I saw many more team decisions and I saw much more
collaboration around problem solving. A problem was not tied to an area, and they had to solve
it. It was tied to the project and the team had to solve it. The team focuses on the goal, not their
job description.

The last item related to culture is diversity. If you do not have a diverse team your Agile process
can lead to groupthink. Groupthink happens when a team wants to get along with each other so
desperately they will not voice their opinion when they disagree with an idea. This is a definite
danger with Agile. People assume collaboration means harmony and always getting along. They
think if they start agreeing with each other all of the time they are being collaborative.
A classic groupthink example is the space shuttle disaster on January 28th, 1986. The space
shuttle Challenger was preparing to launch on a cold day, colder than any other space shuttle
had been launched on. One of the engineers from a company that supplied parts to the space
shuttle warned that there could be risk in launching. He was concerned that the O-ring seals his
company provided may fail in the low temperatures since they had never been tested below 53
degrees Fahrenheit. The engineer shared this concern during a teleconference with NASA and
NASA urged him to reconsider his recommendation to not launch. The pressure from NASA
persuaded the company to acquiesce to the request and overrule their engineer’s warning.
Subsequently the O-rings failed just after launch, leading to the death of the entire Challenger
crew (Griffin 1997).

Agile Software Development

Methods & Tools * Spring 2008 * Page 51

The reciprocal of groupthink is diverse opinion that is spoken freely. This is what you want in
your Agile environment. A good example of this is occurred during the Apollo 13 space
mission. In this instance there was an explosion aboard the spaceship on its way to the moon.
The ship and crew were salvageable with a little luck and some spectacular collaboration.

As the crew experienced various issues in trying to return to earth, the support team on the
ground went through days of brainstorming and collaborating to solve the problems. No one
team member had more influence than another in suggesting a solution, and “getting along” was
not a requirement. As problems were discovered ideas were discussed passionately until the
group reached consensus.

Culture is not an optional ingredient in your Agile recipe. The majority of the team must
embrace the Agile culture else you will not be Agile. You will just be a team that calls your self
Agile and you will go about business as before.

Let’s take a moment to look at the building block of the team, the individual.

Characteristics that influence individual performance

Everyone on your team does not need to be competent and mature, but you want to put a system
in place that breeds competency and helps the entire team get there over time.

Just like in traditional development, competency alone does not guarantee team success. There
are several factors that affect the productivity of an individual. Let’s review a few of them.

Motivation and reward structure

A talented, mature individual will not stick around to work on your Agile projects if his efforts
are not rewarded. A person who is talented can frequently choose where they want to work. It is
up to the company to create an environment that attracts and retains talented individuals.

In simplest terms, behavior reflects incentives. What are the incentives you will provide to
attract talented individuals to your Agile team?

Consider the following items related to motivating and rewarding the individual:

Is the mission of your company clear? Has it been clearly communicated to each individual?
Employees will want to know where the company is going and how their projects tie to the
vision.

How is health of your company? Are you doing well financially? Are you a start-up fighting to
survive? Company health can tie to motivation on in two ways. First, if you are healthy and
growing, you can convey this message to employees and tell them that there is stability, growth
opportunity, raises, and potentially equity. If you are struggling to survive the message is the
importance of their project and how it affects the destiny of the company. Everyone wants to
work on projects that are important.

The Agile environment is going to stress the value of the employee beyond their job title. They
will make management decisions and they will be responsible for proactive communication.
Talented individuals will welcome this environment. Employee evaluations should recognize
and evaluate collaboration skills.

Agile Software Development

Methods & Tools * Spring 2008 * Page 52

Career stage

As you migrate to Agile you will need to consider various approaches to migrating your
employees to an Agile mindset. To help you determine the approach, consider where each
employee is in regards to their career. Here are the main stages and suggested approaches.

The New employee: These employees are in a stage of rapid learning and trying to understand
the company and processes around them. They are dependent on others to get things done, and
they are working to become independent from support. These employees will enjoy learning
Agile because it will level the playing field for them. They will be at ground zero, just like
senior employees, and they will be comforted by the fact that everyone is learning Agile
together. They should also do very well using the methodology because they do not have a lot of
previous experience to bias them.

You do not have to do anything special with these folks. Just ensure they get the same training
as everyone else, and that they are offered the same opportunities as other team members.
The Individual contributor: These employees will make up the bulk of your teams. They are not
new and they are not supervisors or managers. They have a medium to large amount of
experience, and they may have chosen to not become managers, but to become a guru in their
area.

These folks require the most management and you need to address their needs individually
mentor. Some general tips for motivating these employees are:

• Give them an area to own and be responsible for in your migration.

• Give them an opportunity to use and share their expertise.

• Give them a chance to be innovative and unique.

A lot of these folks are looking for growth and will embrace Agile. Some of these folks will just
be getting comfortable with the way things have always been done and they will resent having
to learn another new thing. Be patient with the “resenters” and remember them when the time
comes criticize the Agile design. Their feedback will be valuable.

The Coach: Employees at this stage are motivated by sharing their experience and mentoring
others. They are also looking for an opportunity to renew and revitalize them self. An Agile
migration project is just what the doctor ordered for these employees. Give these folks
leadership opportunities during the migration, such as resolving design issues or leading the
team to consensus. They can also be on the forefront of receiving Agile training and they can
mentor novice employees on the process.

Now that we have a process for getting management and the team on board, let’s discuss the
most important foundational piece, executive support.

Obtaining executive support

Ralph Waldo Emerson said “Nothing great was ever achieved without enthusiasm”. For those of
you with significant business experience, you know that “Nothing great was ever achieved
without executive support”. This is not true because of executive team impact; rather, it is true
because executive teams will stop anything they have not endorsed. They will want details,
justification, meetings and more meetings if they are caught by surprise on a major initiative
they have not endorsed. A migration to Agile would be considered a major initiative in most
companies.

Agile Software Development

Methods & Tools * Spring 2008 * Page 53

If you surprise the executive team that may allow you to still go forward but energy and
momentum will be lost if you get sidetracked by not involving them at the start.
In this section we will show you how to obtain executive support by addressing the specific
needs of the group.

Figure 3. The five key steps in preparing for your Agile migration. Executive support will
provide a foundation for the migration and clear roadblocks for the team along the way.

A few things are guaranteed when you meet with your executive team. They will want answers
to the following questions:

• Why you are pursuing this initiative?

• What is the value?

• What are the costs?

• What are the risks?

• What will it do for me?

Let’s look at some potential answers to these questions and determine which ones best fit your
situation.

Why pursue agile?

There are a variety of reasons why you are pursuing Agile and what the value is. Here are the
ones that resonate with executives:

• There is no methodology. You really do not have any processes or framework in place and
you do projects different every time with varying results. You are pursuing consistent,
successful delivery of projects.

Agile Software Development

Methods & Tools * Spring 2008 * Page 54

• Your current methodology is struggling to keep up with the volume and volatility of your
work. You are looking for a way to deal with projects that need quick turn around, but have
minimum requirements definition.

• Your customer is not happy. The customer feels disconnected from the process and they feel
their needs are not being met. You are looking for a way to get the customer more involved
in the development process and improve their satisfaction. (Important to note here - If you
involve the customer more in the process their satisfaction rating will improve even if your deliveries do
not. They will have more empathy for what it takes to create value for them and in turn they will have a
more positive feel about your company and the development group. In this instance there is truth in the
saying that perception equals reality.)

The items above are solid reasons for migrating to Agile. However, your executives may be
concerned that the migration is inspired by something else such as boredom or trying to become
cutting edge. Perhaps team members are looking for a good resume bullet. There is nothing
wrong with migrating to Agile for a resume bullet or to modernize your processes, but these
need to be secondary benefits. Migrating to Agile is not free and it should only be pursued if it
benefits the company.

One last note on value. This book includes many statistics related to the value of Agile. These
statistics relate to business satisfaction after migration, cost reduction, and improved quality.
These statistics are good for appeasing the Agile detractors in your company and the employees
who try to measure everything in terms of probabilities. You can use these statistics to justify
your migration to Agile and, for lack of better words; your backside will be covered if the
migration goes awry.

But what statistic will show you how much effort a company put into their migration? What
statistic will show you how passionate the employees were that brought Agile into these
companies? Where is the statistic that measures how much executive support was obtained
before the migration started? How much training did employees receive? In effect, the statistics
only prove that Agile is not a fad because enough people have used it to create statistics for it.

There are so many intangibles in a migration to Agile that I would feel guilty if I recommended
it based solely on statistics. I recommend Agile because I have seen it work in several
environments. I recommend Agile because I have enough experience to know what the common
issues are related to software development. I know Agile principles address these issues and
ensure my probability of successfully delivering projects.

The cost of migrating

What will you say when the executives ask about cost? In the model proposed your main
expense will be having a knowledgeable Agile person or company come in to train the team.
This is usually 2 to 10 days of training, with a several phone calls and one-off consulting
sessions post training. A ballpark number for the consulting/training assistance is $5,000 -
$10,000.

The other expenses are less tangible. They are frequently labeled as “soft” expenses because
they do not add to company expenses but reallocate existing resources. This will be true of the
Agile Core Team. Over a 3 month period the Agile Core Team may spend 10% of their time
working on the new Agile methodology. Other costs are relatively minor, such as printing out
materials to support training.

Agile Software Development

Methods & Tools * Spring 2008 * Page 55

The last “expense” of note is slower delivery. You can expect the first few projects to be slower
as the team gets comfortable with the new processes and each other. After an acclimation period
the team will gel around the process and you will deliver high priority features sooner than
before, but patience is necessary with the first few projects.

An analogy that comes to mind is auto reviews. I frequently read car magazines and I enjoy the
road test reviews on new vehicles. Almost every review will lament the position of the shifter,
the strange angle of the seats, or the lack of cup holders.

I will buy the same magazine 6 months later and it will contain the long term road test results
for the same vehicle. Frequently the extended review will say “Although initially quirky, the
position of the shifter becomes intuitive with long term use and simplifies the shifting process.
We also found the seating position to be excellent for long distance road trips.” Your migration
to Agile will be similar. Once you get comfortable with how it works you will find it “becomes
intuitive with long term use and simplifies the development process.”

While discussing the cost of migrating to Agile we should also consider the cost of not
migrating. If you reflect on the items listed in section 4.1.1, the reasons for why you are
pursuing Agile, what happens if you do not address those issues? The consequences can include:

• Declining customer satisfaction

• Loss of key employees

• Missed deadlines for compliance related projects

• Lost sales

• Lost opportunity

Whether you like Dr. Phil or not, there is a question that he frequently asks his guests that
relates to migrating to Agile. The question is “How is your current process working for you?”
This is Dr. Phil’s subtle way of saying what you are doing is not working, period. You need to
make a change.

The risks in migrating

The next question is “what are the risks?” If done correctly I believe the risks are minimal, but I
will list some that can occur with poor management of the migration process:

• You can fail on a critical project if you pilot your Agile methodology on it. The first few
Agile projects should not be mission critical. You need to start and test on projects with
medium priority and work your way up to critical ones.

• The migration can fail if it is executive driven and there is disregard for pursuing employee
buy-in.

• There can be impact to projects if employees hear about the work the core team is doing and
decide to experiment without guidance. I have seen this happen, where a team will take one
Agile practice and try it with disregard for how it needs to dovetail into the upstream and
downstream processes.

• With improper training the methodology can foster cowboy coding and insufficient
documentation.

Agile Software Development

Methods & Tools * Spring 2008 * Page 56

Rewards for the executives

The last question is “What will the Agile migration do for me?” There is nothing wrong with
this question. We all have career needs and no one likes to undertake a venture that puts their
career at risk. It is fair to ask what Agile will do for me on a personal level.

The answer to this question is usually unique. More than likely the executives will never tell
you the answer to this question directly. You will have to deduce the best way to make them
look good. Here are a few ways I have seen an Agile migration make executives look good.

• Agile allows executives to acquire new skills and knowledge which will increase their value
to the company and increase their chances for promotion.

• The move to Agile provides an opportunity to demonstrate leadership skills by leading a
major organizational change. The executive sponsor will reap this reward.

• The migration to Agile will lead to more wealth. Like most of us, executives care about their
compensation. Migrating to Agile will lower costs and increase revenues, which should also
lead to an increase in stock value, or if you are a small company, survival.

• Fewer people issues. All managers dislike dealing with people issues. The Agile work
environment is more satisfying and the executives will find themselves dealing with fewer
employee issues. They will also be pleased to see employee retention rates increase.

• Fewer customer issues. As mentioned earlier, customer satisfaction increases with Agile. A
happier customer leads to more pleasant discussions with the executives.

Communicate frequently

You need to communicate frequently with the executive team and keep them abreast of the
progress the core team is making. Although it may sound a bit anti-Agile, you may want to
publish a weekly status report that provides an overview of progress made, status related to
projected schedule, risks being managed, and issues encountered.

You should also schedule a recurring meeting with the executive team to interact with them face
to face. The meeting will allow you to add more depth to status and continue with the Agile
education of the executives. I believe you should meet with the executives about every two
weeks. This timeframe works well with their busy schedules and also allows you to spend more
time managing the migration and less time reporting on it.

You should also encourage informal interaction with the executives. Some executives may like
a one on one session with the core team. Welcome them with open arms.

You may also have executives who like to drop in during core team meetings to listen in on
activities. This is a positive too, just make sure the presence of an executive does not intimidate
the team and they can stay on course with the task at hand.

All of the items above are great ways to communicate with the executives, but the best way is to
have someone within their ranks directly tied to the migration. You need an executive sponsor.

Agile Software Development

Methods & Tools * Spring 2008 * Page 57

The role of the sponsor

Your executive sponsor will be the liaison to the executive team and help clear hurdles for the
team as they develop the new methodology. The most logical path is to find the executive most
closely related to software development. Frequently this is the VP of Development, or
potentially the VP of Product Management.

If your desire to migrate to Agile is being driven from the “doers”, that is not at the executive
management level, it is best to work your way up the ladder to obtain executive support. For
example, if you are the project manager and you are proposing the change, you could discuss it
with the director of software development. If he buys in, you could ask him to help you take it to
his superior, perhaps the CIO. You could do a dual presentation to convince the CIO of the
need. Once you obtain your sponsor should you expect them to play three major roles.

In their first role they will keep the executive team up to speed on the migration outside of the
scheduled status meetings, and they will act as a champion for the migration. They will help
your team acquire funding for the migration and remove roadblocks at the executive level.

In their second role they will represent the organization, ensuring that the Agile migration
project is in line with the organizations goals and strategic objectives. They will help the Agile
team ensure success and minimize risk to protect the organizations investment in the change.

In their third role they will provide leadership for managing the organizational change that
needs to occur with a shift to Agile. This would include working with the executive team to
create a rewards structure that encourages Agile behaviors.

These three roles can manifest themselves in many ways. Here are some typical activities of a
project sponsor.

• Help the team define success for the migration.

• Help the team obtain outside help when needed.

• Ensure that the new methodology works within the organization culture.

• Help with migration team morale and recognize successes along the way.

Lastly, help your executive sponsor if they do not have a technical background. Train them on
how software development works and the intricacies of Agile. Be patient if they need time to
digest how it all works.

Now that we have a feel for the cultural needs of the executives, let’s take a moment to discuss
working managers.

The role of the core team—ensuring company buy-in

The key to a successful Agile migration is having the change driven from within. The change
needs to be driven by key players throughout the company. Once this team is created they will
be evangelists to the entire company.

The role of this group, which I call the Agile Core Team, is to learn as much as they can about
Agile and use this knowledge to outline a custom Agile methodology for the company. The
team will collaborate and reach consensus on new processes, then mentor project teams as they
use the Agile techniques.

Agile Software Development

Methods & Tools * Spring 2008 * Page 58

This core team is powerful and influential for three reasons:

• They are not a part of line management. There will be very few members from the
management ranks but the majority of the team will be “doers”. The people that actually
design, build, create, and test the code. This will add to the credibility as the methodology is
rolled out to the company. It is not a management initiative being forced upon everyone; it is
coming from real people who will be a part of the project teams.

• Since the team is composed of doers they actually know the ins and outs of developing in
your environment. This is different than when consultants come in suggesting standard
practices and disregarding the realities of a specific company. The Agile Core Team has
experience with your company and they will use that experience to develop a methodology
that knows what to keep and what to discard within the existing practices.

• Remember our earlier discussion of awareness, buy-in, and ownership? What better way to
create awareness than to have Agile Core Team members come from each functional area.
Imagine a member being from quality and going back to the quality team and telling them
what is going on with the new methodology, or a developer doing the same with the
development team. Having team members from all areas will initialize awareness across the
company.

Many companies use outside consulting to get their methodology going. I have seen several
companies choose to go with Agile methods such as Scrum, and then have a 3rd party come in
and train, design, and deploy the methodology. In my opinion this approach is not as effective as
growing the methodology from within. Creating it from within the organization addresses all of
the issues with ownership. It is hard to get a team to buy into a process that was forced upon
them. Note that there are occasions when an organization is so dysfunctional that it needs to
have a methodology forced upon it. This is the exception, not the norm.

Obtaining team members from all areas

Once you obtain executive support you can pursue creation of the Agile Core Team. Your
sponsor will probably suggest managers for the team, but you need to remind him that part of
the power and influence of the core team is they are “doers”. You might also find yourself
pursuing the best and brightest people from each area. People with a positive attitude and a pro-
Agile mentality. People that are open minded to change. These would be excellent attributes to
list on a job opening, but would they be reflective of your current employee mix, the people that
you want to embrace the new methodology? Probably not.
If your company is like most you probably have some mix of the following:

• Brilliant and collaborative people

• People that are brilliant but difficult to work with

• People who challenge ever initiative

• People who loathe change and avoid it at all costs

You need to make sure the makeup of the core team is similar to the makeup of the company.
This will help you obtain buy-in from all types when you begin roll-out.

After determining types of folks for the team, you need to determine team size. A group large
enough to capture a diverse set of perspectives but small enough to be, yes, “Agile”. I suggest a
number somewhere between 5 and 10 people. Note that if the team is larger you can still make
progress when a team member is pulled for a production issue or is out due to vacation or
illness.

Agile Software Development

Methods & Tools * Spring 2008 * Page 59

To give you a feel for creating your own team, let’s return to Acme Media. We find that Wendy
Johnson has obtained the CIO, Steve Winters, as the executive sponsor for the Agile migration.
Amazingly Steve has asked to be on the core team and he says he can participate in the 6 hours
per week requested of team members.

Wendy and Steve have also identified their Agile Core Team and they have received approval
from the managers of the people selected. Wendy and Steve worked hard to get a diverse group
of people on the team to allow many perspectives to be considered in creation of the
methodology. Their team member list is can be seen in table 4.1. You will notice that members
are from various functional areas and they all have different points of view on what a
methodology should do, just like your team will.

Table 1 Acme Media’s Core Team. Core teams are composed of cross functional team members
with various levels of Agile knowledge. The diversity of the team works well for scrutinizing
the new process.

Functional
Area/Role

Name Background

Sponsor/CIO Steve Winters Six Sigma enthusiast. Does not believe in
change for the sake of change. Willing to pilot
Agile and see if the benefits manifest.

Project
Management

Wendy Johnson Frustrated with the status quo. Lately quoting
Dr. Phil “If it ain’t working you got to try
something else”. Wants a methodology that
reflects the reality of how software is
developed.

Development Roy Williams Familiar with XP development techniques,
but very comfortable with the waterfall
process that Acme has used the last few years.

Quality Assurance Vijay Kumar Concerned that Agile will bypass or minimize
the need for testing. Experience working in an
ISO environment. Frequently says “document
what you do, do what you document”.

Operations Matt Shiler Lives in a stressful world of managing
production issues and deployment of new
functionality. Worried that he will not have
enough time to work with the core team.

Requirements Wes Hunter An Agile zealot. Been looking forward to this
day for a long time. Dedicated to making
Agile work at Acme. Works with Product
Management to refine feature design for
customers.

Architecture Keith Gastaneau Wants to make sure that an Agile
methodology does not bypass good
architecture practices, and there is enough
time to build the infrastructure needed for
projects.

Product
Management

Peggy Romani Unfamiliar with Agile but excited of the
promise to embrace the customer and
changing requirements. Identifies target
markets and strategic needs of the products.

Agile Software Development

Methods & Tools * Spring 2008 * Page 60

Just like Acme, you will need to get manager approval for the employees you select for your
team. The managers will probably be looking for a time estimate from you. The firs few weeks I
like to see the core team meet twice a week for 2 hours each meeting. You can also assume each
team member will get a couple of hours of Agile homework a week (researching existing
development methods, etc.) A good number to give the managers is 6 hours a week for 3
months. The duration will decrease over the 3 months. You may see the weekly meetings
reduced to one hour, but to be safe still ask for 6 hours per week for 3 months. Better to promise
late and deliver early.

After team selection you need to meet with the members and set expectations.

First meeting of the core team

Once your team has been named you should schedule a kickoff meeting to set expectations and
goals. Similar to meeting with your executive sponsor, you will need to start the meeting by
telling the team why the company is migrating to Agile. The verbiage will be slightly different
with the core team, with less focus on financials and a more focus on process.

The kickoff meeting

To see an example, let’s look at the presentation Steve Winters is using at Acme’s kickoff
meeting. Steve starts the meeting with the following bullets:

• Acme Media’s web division was no longer a supplemental site to the television station. The
web sites had their own audiences and advertisers.

• With the increase in popularity of the web sites, the backlog of new features and application
requests has increased by 70%.

• Many of the feature requests are time sensitive. If the requests cannot be completed soon our
competitive advantage will be lost.

• Our existing development processes, where we have them, are not working well with our
tight deadlines or with the evolving requirements.

• We need to research a better way of dealing with urgent projects.

As you can see, Steve’s message was tailored more to the project team than it was to an
executive group. He spoke indirectly to revenue by saying “lost advantage” and he mainly
targeted process improvement. The best thing Steve said was “the web sites are no longer
supplemental sites to the TV station” and “the web sites have increased in popularity.” Steve
was telling the team that their work was important.

You should follow Steve’s example during your migration, especially emphasizing the
importance of the work the team does and how valuable the methodology they develop can be.

Tough questions

Of course everything will not be roses at your kickoff. You can expect difficult questions and
perhaps “attitude” from some of the core team members. Here are a few of the questions and
comments you are likely to hear during your kickoff:

• We cannot create the methodology. We don’t know anything about Agile.

• We need consultants to do this for us.

Agile Software Development

Methods & Tools * Spring 2008 * Page 61

• We have tried to change before and it failed.

• What is our role?

• What is the role of the executive sponsor?

The answer to the first question is easy. The team will get trained and soon they will have a
good working knowledge of Agile. If you are lucky, a few team members are already versed on
Agile to help bring the team knowledge level up.

On the second question they are half right. You will bring in a consultant or Agile guru to train
the team on the fundamentals, and perhaps discuss what other companies have done with their
methodologies. But the consultant will not create the methodology for them. They will do that
and later they will be glad they did.

The third question is a warning sign to you if you do not know the details of a past failure. Was
it due to a methodology being forced on the team? Was it due to waning executive support for
the change? Do your homework if you learn of a past failure and make sure your plan covers the
lessons learned from previous ventures.

Assuming the issues related to a previous failure do not exist anymore, you can explain to the
core team why the migration should be a success this time:

• The design will be created by experts who know the business well - them.

• They will not be forced to remove a legacy process if it is proven and adds value. If this is
true there is a good chance it is already an Agile process.

• The approach will not be shotgun. The methodology will be built iteratively and it will be
deployed iteratively to mitigate risk. In addition it will not be beta tested on a mission
critical process.

Answering the question about their role is simple and clear. The team will learn about Agile and
use this information to create the Agile methodology. In quick summary they will:

• Train

• Document the existing project and development processes.

• Determine what to keep and what to discard with the current processes.

• Compare the existing process to a pure Agile one.

• Design a new methodology based on Agile principles and the reality of the work performed.

• Get feedback on the design and tweak it.

• Take the design for a test run on a low to medium level priority project.

• Learn from the test run.

• Continue refining and testing until the methodology is solid enough to be used on all
projects and the team is comfortable with the processes being used.

As mentioned earlier, the role of the executive sponsor is to clear roadblocks for the team and to
be the liaison to the executive team at large.

Agile Software Development

Methods & Tools * Spring 2008 * Page 62

Your role in the migration

Another question not listed but potentially asked is what is your role? Assuming you, the reader,
are the leader of the core team, there will probably be questions about your role. If you are a
manager you want to make it clear that you are all equals during team meetings. Titles and
status will be left at the door including your own. As leader you will help organize the meetings
and report status to the sponsor. You will also act as facilitator and help the team reach
consensus on design ideas.

Training the core team

Training needs to happen within a few days of the kickoff with the core team. Determining the
level of training is tricky. You want to provide enough information so the team understands the
Agile principles and their value. You do not want to train to a point where you have handed
them a methodology - especially somebody else’s. You want them to combine Agile principles
with their knowledge of your business to create a methodology that is effective for your
company.

You will need to use your own judgment on how deep to train depending on how well the
principles are being digested and how creative you perceive the team to be. Here is a suggested
outline for training

1. Explain to the team where Agile came from, what makes it works, places where it is
working, and why it has not faded away. This training should take 4 to 8 hours.

2. Give the team a few days to absorb the principles then train them on the phases of Agile. We
have chosen phase names that map well to names used in traditional software development,
which helps with the training process.

3. Once training is complete the team will begin the design process by reverse engineering the
existing processes.

Keep the energy flowing—goals and milestones

As mentioned earlier, you need to have regularly scheduled meetings of the core team to
maintain momentum. You also need to create a list of milestones for the team and time-box
their work. This is critical because a team can easily spend a year working on the creation of a
methodology. Just like Agile development, time-boxing the design process will force decisions
and allow for early demonstration of the methodology to validate it. The methodology will be a
living thing that is refined continually. The first priority is to bring it to life quickly.

To get a feel for time-boxing the redesign, let’s look at the plan that Acme Corporation has
outlined. In this example the total duration is two months to reach the point of being able to test
the methodology on a project:

• Train the team on Agile principles, phases and optionally with a real world example. – 1
week

• Document the existing development process. – 2 weeks

• Review the existing process for deficiencies and identify areas to change to make them more
Agile – 1 week

• Outline a new Agile process with the proposed changes – 2 weeks

• Get feedback from non-team members on the proposed design – 1 week

Agile Software Development

Methods & Tools * Spring 2008 * Page 63

• Refine the design based on the feedback. – 1 week

• Pick a test project to try the new methodology on. – 1 week

You should estimate your design work to take anywhere from four weeks to eight weeks,
depending on core team availability, business model complexity, and the dynamics of the team.
Some teams reach decisions quickly, some will debate for a while before reaching consensus.
Use your design milestones to push the team to decisions if they get stuck along the way.
Remind them that the design is not permanent and will be refined as you all learn.

Developing a communication plan

In the process we have outlined so far, the core team knows what is going on and their managers
have a high level idea of what their employees are doing. Outside of these people, the Agile
migration project has not been communicated to all of the employees of the company.

A question that Acme Corporation has to answer, and you do too, is how to communicate the
migration to the development group at large. There are two approaches that can be taken
depending on how you categorize your company.

A category one company is progressive and somewhat cutting edge. A good portion of the
employees may have already heard about Agile and they are curious about it. The culture
embraces change and they take pride in their open mindedness. The culture probably embraces
innovation. Some companies that come to mind are Apple, Google, and Yahoo.

If your company falls into this category you can communicate freely on the status of the
migration, including issues encountered and adjustments you are making along the way. You
may want to post a weekly update to your intranet or email one to the development group at
large as you progress.

A category two company has limited knowledge of Agile. The culture may struggle with change
and there could be historical issues in trusting executive management. These companies may
have limited success in being innovative.

If your company has any of these characteristics, I suggest the following ideas for your
communication plan and method:

• Get the executive team on board as soon as possible. Keep them up to speed on the progress
and findings as you progress. This group will help you when you officially announce the
methodology to everyone.

• Outside of the executive group, maintain a low profile as the core team is developing the
methodology.

• Allow the core team to communicate to their peers and their team informally about their
work. Someone once said the best way to spread information is to label it as a secret. Don’t
label the migration as a secret, but don’t spend too much time communicating about it before
you know what it is. The informal communication will also kick-off the awareness phase.

There is probably fear of the word “Agile” in your environment, so do not use the word when
communicating with others. You should also consider labeling your methodology in a way that
has no connections to Agile. Your goal is to get the company to adopt your new methodology.
You do not care what they call it. So consider a name like ACDC, Acme Corporation
Development Cycle versus ADLC, the Agile Development Lifecycle.

Agile Software Development

Methods & Tools * Spring 2008 * Page 64

Most Agile migrations will have issues with skeptics and people who are resistive to change. As
you get closer to testing your methodology you need to embrace these people and give them the
floor with the core team. Let them discuss their concerns and critique the proposed design. The
value in this is twofold. First, a good deal of the time they will identify a weakness in your
process. Second, they will be converted to advocates if you listen to them and you are able to
make some of the changes they suggest.

Summary

Establishing an Agile culture is just as important as establishing an Agile process. An Agile
culture must be supported by management or the team will struggle to succeed. Train your
management team on Agile concepts and establish their support before asking your team to.

Train your managers on the soft skills that support an Agile environment such as listening and
team building skills. Teach your managers to shepherd the team and to teach the team how to
manage themselves.

An Agile team is successful because it is honest and project status is transparent. Reward your
team for demonstrating these values.

Assess your project team member needs and give them a migration role that supports their
unique needs.

Kick start your migration by establishing support at the executive level of your company. Be
ready to quantify the value of the migration to the executive group.

Create a core team that is composed of employees throughout the development process. This
group will tailor an Agile process to your environment and drive the migration to Agile from
within. Make sure your core team is diverse and represents many skill sets and perspectives.
Make sure the core team is clear on the value of Agile before asking them to engage in the
migration process.

Establishing your first pass at an Agile process can become a run away train if you do not time
box the effort. Limit the time you spend creating your lifecycle and remember that you can, and
will, improve it over time.

Once you have initialized your culture and established a core team you will be ready to create
your custom lifecycle.

Classified Advertising

Methods & Tools * Spring 2008 * Page 65

 Independent Report by Forrester Research, Courtesy of MKS:
“Selecting the Right Requirements Management Tool – Or Maybe
None Whatsoever”. Forrester Research recently evaluated the
requirements management tools landscape across four criteria:
Baselining, Linking & Tracing, MS Word Support, and Workflow.
MKS is the only vendor in the evaluation to fully satisfy all of
the critical features in Forrester's evaluation. Download your
copy of the independent report, courtesy of MKS:

http://www.mks.com/mtspring-rmreport

Are you looking for the right development tools for your task. A
new directory of tools related to software development has been
launched. It covers all software development activities:
programming (java, .net, php, xml, etc), testing, configuration
management, databases, project management, modelling, etc.

http://www.softdevtools.com/

The Software Quality Assurance Zone is a repository for
resources concerning software testing (unit testing, functional
testing, regression testing, load testing), code review and
inspection, bug and defect tracking, continuous integration.

http://www.sqazone.net/

Advertising for a new Web development tool? Looking to recruit
software developers? Promoting a conference or a book?
Organizing software development training? This clasified section
is waiting for you at the price of US $ 30 each line. Reach more
than 50'000 web-savvy software developers and project managers
worldwide with a classified advertisement in Methods & Tools.
Without counting the 1000s that download the issue each month
without being registered and the 40'000 visitors/month of our
web sites! To advertise in this section or to place a page ad
simply http://www.methodsandtools.com/advertise.php

METHODS & TOOLS is published by Martinig & Associates, Rue des Marronniers 25,
CH-1800 Vevey, Switzerland Tel. +41 21 922 13 00 Fax +41 21 921 23 53 www.martinig.ch
Editor: Franco Martinig ISSN 1661-402X
Free subscription on : http://www.methodsandtools.com/forms/submt.php
The content of this publication cannot be reproduced without prior written consent of the publisher
Copyright © 2008, Martinig & Associates

http://www.mks.com/mtspring-rmreport
http://www.softdevtools.com/
http://www.sqazone.net/
http://www.methodsandtools.com/advertise.html
http://www.methodsandtools.com/forms/submt.php

