
METHODS & TOOLS
Practical knowledge for the software developer, tester and project manager ISSN 1661-402X
Summer 2012 (Volume 20 - number 2) www.methodsandtools.com

Do Software Developers Want to Be Managers?

According to surveys, Agile is now implemented by a majority of organizations and Scrum is
the project management framework the most widely used. A characteristic of Scrum teams is
that they are (or should be) self-organized. Team members are now responsible to divide
between themselves the workload and they will need to deal with conflicts between team
members. The former project manager authority and responsibilities are spread amongst the
Scrum team. But do Agile developers really want this? Self-organization relies on the ability of
team members to communicate and negotiate. The transition from a hierarchical team
organization to a flat relationship where everybody participates is not easy and faces many
challenges. Software developers have in majority an introverted personality type and this is not
the best setting to interact with colleagues or even just to express needs or feelings. Teams
might end us as just being organized by the most vocal members. Another implied hypothesis of
self-organization is that all team members should have an equal weight in decisions, even if
technical superiority or leadership might be recognized. This might not exist when you have
teams that mix internal employees and contractors that might be denied authority. Self-
organization also works in a culture of individual responsibility, affirmation and (positive)
contradiction. This is not always the case in all organizations or countries. The team has now to
deal with non-performing members, people that are either technically limited or that have a
difficult personality. Team members have now to negotiate with these people to try to use them
as best as the can or initiate the process that will remove them from the team. As we might have
wished sometime to have the power to fire somebody we were working with, having to do it for
real is something completely different. The self-organization of Scrum gives more power to
team members, but with the power also comes the responsibility. The Agile transition from
traditional project management is not easy and this type of team organization might not be the
best for all people or culture, local or organizational. I am not sure that all Agile developers
want to bear some management responsibilities. But being Agile doesn't mean that development
managers have to stop working to maintain healthy relationships between team members. As the
ScrumMaster, but from outside the team, they still have to be ready to provide support and
actions to keep the project on track, walking on the thin line between letting the team grow by
itself and preventing issues to deteriorate too seriously.

Inside
Creating an ATDD Ready Sprint Backlog.. page 3
Continuous Delivery Using Maven... page 9
DSDM Atern Overview .. page 23
Knowledge Management and Software Organizations... page 33
Erlang Open Telecommunications Platform ... page 45
Concordion - Automated Acceptance Tests in Java.. page 49
Mockito - Mocking Framework for Java .. page 57
Robotium - Android Test Framework... page 62
JMeter-Plugins - More Obvious and Powerful Load Testing ... page 65

www.methodsandtools.com

Agile Software Development

Methods & Tools * Summer 2012 * Page 2

SpiraTeam the complete Agile ALM suite - Click on ad to reach advertiser web site

http://www.inflectra.com/SpiraTeam?Source=AgileChannel

Testing in Scrum

Methods & Tools * Summer 2012 * Page 3

Creating an ATDD Ready Sprint Backlog

Ralph Jocham, effective agile, http://agiletips.blogspot.com

Scrum is a very powerful framework to drive out the right requirements and thereby delivering
the best possible product in a given time frame. This is made possible by frequent inspection
and adaptation based on ongoing transparency. One of the empirical process-control-feedback
loops is the Sprint Review in which the product increment is being made public for review and
feedback. This feedback helps to discover new features, remove unneeded ones and alter them
based on the gained insight. It is nothing less, but effective just-in-time planning to maximize
the ROI. Most of those new features are broken down into requirements during the Product
Backlog grooming sessions and subsequent Sprint Planning meetings.

Scrum and the Scrum Guide do not mandate how you write your requirements, many prefer
User Stories but any other format is ok as well. The same applies for the Sprint Backlog, Scrum
only requires that you have a plan to deliver the selected Product Backlog items and that at any
given moment during the Sprint you know how much work is remaining visualized with the
Sprint Burndown, another popular Scrum practice. As you can see, Scrum is a rather minimal
framework, with only a few strict rules and many possibilities to apply proven practices in your
given context.

Sprint Backlog

As mentioned before, the Scrum Guide defines the Sprint Backlog as the set of Product Backlog
items selected for the Sprint plus a plan for delivering the Product Increment and thereby
realizing the Sprint Goal. One possible enhanced practice of a plan can be to specify the Sprint
Backlog with a set of examples. It is a rather new practice, but gaining more traction in recent
years.

With this approach you create an extended implementation of a Sprint Backlog that responds to
two fundamentals questions:
• How can the Development Team be sure that the plan is adequate in fulfilling the underlying

requirements?
• How can they foster collaboration and confirm repeatedly on a recurring basis that the

software under construction always meets the evolving requirements?

Planning and driving a Sprint with examples allows the Development Team to better understand
the requirements. It seeks to add an extra level of conversation to eliminate the communication
gap between business and the team. This is done by illustrating each Product Backlog item with
a cohesive set of concrete examples, expressing the success criteria. These examples, which are
nothing less than a provable plan, will guide the Development Team to build the right product
right. During the Sprint, by translating these business-facing examples into automated tests, we
gain more transparency about the business need and simplify the “inspect and adapt” cycle.

For many of us, it is assumed that the plan of the Sprint Backlog is a list of technology-facing
tasks ignoring the ‘why’ in the first instance. The underlying assumption is, that when all tasks
are completed, the Product Backlog item will be ‘done’ right.

http://agiletips.blogspot.com/

Testing in Scrum

Methods & Tools * Summer 2012 * Page 4

tinyPM the smart Agile collaboration tool - Click on ad to reach advertiser web site

http://www.tinypm.com/?utm_medium=pdf&utm_source=mt

Testing in Scrum

Methods & Tools * Summer 2012 * Page 5

Figure 1 - Classic Sprint Backlog

Splitting requirements into tasks can help developers to think about the amount of work
involved and leads to more accurate estimates but it is a poor strategy to foster collaboration. In
the end, the progress during the Sprint is measured with the completed Product Backlog items.
A Sprint Backlog that is centered on the validation of business needs helps to be more effective
in delivering the business value right.

The underlying Problem

Doing the right thing and doing the right thing right - this is the paramount problem of software
construction. Even though Scrum helps trawling the right requirements through ongoing Product
Backlog grooming, almost invariably there is a communication gap, a misunderstanding
between Product Owner and the Development Team. The reasons for this is that requirements
are ambiguous, tend to be abstract and often omit the ‘obvious’ details. Therefore, they are hard
to grasp, not tangible and cannot easily be projected into a cohesive solution. Furthermore, if we
purely plan the Sprint with a list of tasks that ignore the channels of communication with
stakeholders, this adds risks that can cause too much Sprint Backlog variation and make it hard
for the team to reach the Sprint Goal.

The described practice suggests an alternative strategy to plan the Sprint. This has major
impacts affecting the Sprint Planning Meeting, the Daily Scrum, Sprint Review and the
Grooming if you choose to do it. During the Sprint Planning/Grooming, the plan produced by
the Development Team is augmented with a set of concrete examples illustrating each business
requirement. Because the work is now also expressed in terms of business requirements, during
the Daily Scrum, each team member can easily focus on the bigger picture and align with the
‘why’. There is no lack of awareness of the Sprint Goal. Furthermore, by translating the
business-facing examples into automated tests, it enables the Development Team to
systematically and quickly inspect during the Sprint that the software increment always meets
the evolving requirements towards the Definition of Done and the overall goal.

Testing in Scrum

Methods & Tools * Summer 2012 * Page 6

Automation

Assisted by the business-facing automated tests, the Development Team can easily confirm that
all examples work successfully. This changes the dynamic of the Sprint Review because the
conversation is much more about the future requirements than the work done during the Sprint.
We apply the practice in two stages:

• During the Sprint Planning Meeting and/or Grooming, the Development Team illustrates
each Product Backlog item with a cohesive set of examples and related data in order to
create a plan. These examples are concrete, tangible, provable and automatable.

• During the Sprint, the Development Team translates those examples into tests in order to
inspect the Increment under construction. These tests should be automated to facilitate fast
regression testing.

In addition to the regular tasks, each Product Backlog item selected for the Sprint is augmented
with a set of examples and each one illustrates the expected behaviors. These concrete examples
communicate and validate the acceptance criteria.

Figure 2 - Sprint Backlog specified by Examples, ready for ATDD. The dark yellow PBIs (flip
side) contain additional examples and related test data. The orange-brown tasks are ATDD
related work items

The Sprint Backlog, enhanced with a set of examples in form of automated tests, is a highly
visible, real-time picture of the work that the Development Team plans to accomplish during the
Sprint. These concrete examples provide enough detail so that changes in progress can be
understood throughout the Sprint, specifically during the Daily Scrum. If a new example is
required, the Development Team adds it to the Sprint Backlog. When an example is added, the
estimated remaining work for the whole Sprint is updated.

Testing in Scrum

Methods & Tools * Summer 2012 * Page 7

By translating the business-facing examples into tests, we enforce an additional level of
communication, which answers the question: ‘How can we prove, that the Increment is right and
working correctly?’ It is this conversation that puts the whole Scrum Team on the same page.

Planning and inspecting with examples will fundamentally improve the conversation between
the Development Team and the Product Owner. Card, Conversation and Confirmation as
proposed by Ron Jeffries is put to it’s best. As a result of correctly implementing this practice,
no Product Backlog item should be rejected by the Product Owner during review without good
reason as not "Done". This result occurs because, each day of the Sprint, all members of the
Development Team focus on the bigger business picture and align with the ‘why’ of the
requirements. Also, this approach helps to horizontally scale the communication of the business
intentions when working with several Scrum Teams under one Product Owner and one Product
Backlog in a scaled Scrum environment.

ATTD and TDD in Action

The following schematic flow visualizes the steps of driving the development guided by
examples in a test driven development fashion. For every User Story from the Product Backlog
that has been put into the Sprint Backlog in alignment with the overall Sprint Goal, a set of
acceptance criteria are defined. Each of those acceptance criteria, one or more examples are
specified. For each example an acceptance test is being written which will fail as the business
functionality has not been programmed yet.

The next step is to program the functionality in a TDD way. At some point the test of the
example will pass and turn green meaning that all unit tests are passing and the acceptance test
is working according to the example. Now is the right time to refactor the code base to keep it
clean.

This approach seems to be time intensive at the beginning, especially for developers not well
versed in writing tests first. However, in practice it is the basis for a long time sustainable high
product development velocity. It allows for fast regression testing which is mandatory when
throughput and quality are paramount.

Eylean Scrum Board - Click on ad to reach advertiser web site

http://www.eylean.com/?utm_source=methodsandtools

Testing in Scrum

Methods & Tools * Summer 2012 * Page 8

Figure 3 - ATDD to TDD Flow when developing a User Story

Credits

Many thanks to Mario Cardinal of http://www.mariocardinal.com. Without his input and
support this article wouldn’t have been possible.

The details of this article will be proposed by Mario Cardinal and the Ralph Jocham to
Scrum.org as an extension to Scrum.

References

1. Scrum Guide, http://scrum.org/scrumguides

2. Brian Marrick, http://www.exampler.com/book/commentary.html

3. Lisa Crispin, http://www.methodsandtools.com/archive/archive.php?id=23

4. Joshua Kerievsky, http://industriallogic.com/papers/storytest.pdf

5. Acceptance Test-Driven Development, http://en.wikipedia.org/wiki/Test-
driven_development

6. Dan North, http://dannorth.net/introducing-bdd/

7. Gojko Adzic, (2011). Specification by Example: How Successful Teams Deliver the Right
Software. Greenwich, CT: Manning Publications

8. Robert C. Martin, Grigori Melnik: Tests and Requirements, Requirements and Tests: A
Mobius Strip. IEEE Software 25 (1): 54-59 (2008)

9. Ron Jeffries, http://xprogramming.com/articles/expcardconversationconfirmation/

http://www.mariocardinal.com/
http://scrum.org/scrumguides
http://www.exampler.com/book/commentary.html
http://www.methodsandtools.com/archive/archive.php?id=23
http://industriallogic.com/papers/storytest.pdf
http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Test-driven_development
http://dannorth.net/introducing-bdd/
http://xprogramming.com/articles/expcardconversationconfirmation/

Continuous Delivery

Methods & Tools * Summer 2012 * Page 9

Continuous Delivery Using Maven

James Betteley, Caplin Systems, http://jamesbetteley.wordpress.com

I’ve recently been working on a Continuous Delivery system using Maven as the build tool.
Many people who have used Maven in the past might well consider it to be a poor fit for a
Continuous Delivery model, but with a bit of perseverance, I think we’ve finally got the
makings of a pretty good system, which I would like to share with you in this article.

I’ll start off with a short introduction to the Continuous Delivery model. Traditional Continuous
Integration systems concentrate on running tests and compiling software, occasionally they’ll
package a build up, and maybe even label it. This is still someway short of the package that we
want to deliver to production. With continuous delivery, we go a few steps further than
traditional C.I. and make each build ready for a deployment to production.

This means that with every check-in, we build our artifacts into a deployable package, include
documentation (such as release notes, readme etc), we label each build and store it in a
repository ready for deployment, we provide the deploy scripts and we means test the
deployment by deploying the build to test environments during the continuous delivery process.
The idea is that every build, if it passes all the tests along the way, becomes available for
deployment to production.

This has numerous advantages over C.I. it means we don’t have to do any additional work to our
artifacts after they pass testing in order to make them “production ready” and it encourages us
(or rather, it forces us) to automate every step along the way, making the whole process more
reliable, repeatable and with less risk of human error. The continuous delivery system, in a
nutshell, looks a bit like this:

http://jamesbetteley.wordpress.com/

Continuous Delivery

Methods & Tools * Summer 2012 * Page 10

NeoLoad Load and Performance Testing Solution - Click on ad to reach advertiser web site

http://www.neotys.com/direct-download.php?utm_source=methodsandtools&utm_medium=magazine&keyCampaignId=70120000000V53I&keyIncomingSource=Advertising&utm_campaign=neoload&utm_content=fullpage

Continuous Delivery

Methods & Tools * Summer 2012 * Page 11

The Tools

I started out with a bit of a carte blanche with regards to what tools to use, but here’s a list of
what was already in use, in one form or another:

• Ant (the main build tool)

• Maven (used for dependency management)

• CruiseControl

• CruiseControl.Net

• Go

• Monit

• JUnit

• js-test-driver

• Selenium

• Artifactory

• Perforce

The decision of which of these tools to use for my system was influenced by a number of
factors. Firstly I’ll explain why I decided to use Maven as the build tool.

I’m a big fan of Ant, I’d usually choose it (or possibly even Gradle now) over Maven any day of
the week, but there was already an existing Ant build system in place, which had grown a bit
monolithic, so I wanted to distance myself from that, and opted for Maven which offers more of
a “convention over configuration” approach to build management. I’ve used Maven before, so
I’ve had my run-ins with it, and I know how hard it can be if you want to do anything outside of
“The Maven Way”. But the project I was working on seemed pretty simple so Maven got the
nod.

GO was the latest and greatest C.I. server in use, and although the enterprise version is pretty
expensive, we had a license, so I thought I’d give it a go (no pun intended). Also I’d never used
it before so I thought that would be cool, and it’s from Thoughtworks Studios, so I thought it
might be pretty good. I particularly liked the pipeline feature it has, and the way it manages each
of its own agents. I would have opted for Jenkins had there not already been a considerable
investment in GO.

Artifactory was chosen as the repository manager, but the system could work just as easily with
Sonatype’s Nexus, or even with netshares if you didn’t want to install a repository manager.

I setup Sonar to act as a build analysis/reporting tool, because we were starting with a Java
project. I really like what Sonar does, I think the information it presents can be used very
effectively. Most of all I just like the way in which it delivers the information. The Maven site
plugin can produce pretty much all of the information that Sonar does, but I think the way Sonar
presents the information is far superior – more on this later.

Perforce was the incumbent source control system, and so it was a no-brainer to carry on with
that. In fact, changing the SC system wasn’t ever in question. That said, I would have chosen
Subversion if this was an option, just because it’s so utterly free!

Continuous Delivery

Methods & Tools * Summer 2012 * Page 12

That was about it for the tools I wanted to use. It was up to the rest of the project team to
determine which tools to use for testing and developing. All that I needed for the system I was
setting up was a distinction between the Unit Tests, Acceptance Tests and Integration Tests. In
the end, the team went with Junit, Mockito and a couple of in-house apps to take care of the
testing.

The Maven Build, and the Joys of the Release Plugin!

The idea behind my Continuous Delivery system was this:

• Every check-in runs a load of unit tests

• If they pass it runs a load of acceptance tests

• If they pass we run more tests – Integration, scenario and performance tests

• If they all pass we run a bunch of static analysis and produce pretty reports and eventually
deploy the candidate to a “Release Candidate” repository where QA and other like-minded
people can look at it, prod it, and eventually give it a seal of approval.

This is the basic outline of the build pipeline:

Maven isn’t exactly fantastic at fitting in to the pipeline process. For starters we’re running
multiple test phases, and Maven follows a “lifecycle” process, meaning that every time you call
a particular pipeline phase, it runs all the preceding phases again. Our pipeline needs to run the
maven Surefire plugin twice, because that’s the plugin we use to execute our different tests. The
first time we run it, we want to execute all the unit tests. The second time we run it we want to
execute the acceptance tests – but we don’t want it to run the unit tests again, obviously.

You probably need some familiarity with the maven build lifecycle at this point, because we’re
going to be binding the Surefire plugin to two different phases of the maven lifecycle so that we
can run it twice and have it run different tests each time. Here is the maven default lifecycle:

Continuous Delivery

Methods & Tools * Summer 2012 * Page 13

Telerik Test Studio - Click on ad to reach advertiser web site

http://www.telerik.com/automated-testing-tools.aspx?utm_source=QAChannel&utm_medium=banner&utm_campaign=Dec14_QAChannel_HTML5_HP

Continuous Delivery

Methods & Tools * Summer 2012 * Page 14

Default Lifecycle

• validate

• initialize

• generate-sources

• process-sources

• generate-resources

• process-resources

• compile

• process-classes

• generate-test-sources

• process-test-sources

• generate-test-resources

• process-test-resources

• test-compile

• process-test-classes

• test

• prepare-package

• package

• pre-integration-test

• integration-test

• post-integration-test

• verify

• install

• deploy

Running the Unit Tests

So, we need to bind our Surefire plugin to both the test phase to execute the UTs, and the
integration-test phase to run the ATs, like this:
<plugin>
<!-- Separates the unit tests from the integration tests. -->
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
 <configuration>
 -Xms256m -Xmx512m
 <skip>true</skip>
 </configuration>
 <executions>
 <execution>
 <id>unit-tests</id>
 <phase>test</phase>

Continuous Delivery

Methods & Tools * Summer 2012 * Page 15

 <goals>
 <goal>test</goal>
 </goals>
 <configuration>
 <testClassesDirectory>
 target/test-classes
 </testClassesDirectory>
 <skip>false</skip>
 <includes>
 <include>**/*Test.java</include>
 </includes>
 <excludes>
 <exclude>**/acceptance/*.java</exclude>
 <exclude>**/benchmark/*.java</exclude>
 <include>**/requestResponses/*Test.java</exclude>
 </excludes>
 </configuration>
</execution>
<execution>
 <id>acceptance-tests</id>
 <phase>integration-test</phase>
 <goals>
 <goal>test</goal>
 </goals>
 <configuration>
 <testClassesDirectory>
 target/test-classes
 </testClassesDirectory>
 <skip>false</skip>
 <includes>
 <include>**/acceptance/*.java</include>
 <include>**/benchmark/*.java</include>
 <include>**/requestResponses/*Test.java</exclude>
 </includes>
 </configuration>
</execution>
</executions>
</plugin>

Now in the first stage of our pipeline, which polls Perforce for changes, triggers a build and runs
the unit tests, we simply call:
mvn clean test

This will run the surefire test phase of the maven lifecycle. As you can see from the Surefire
plugin configuration above, during the “test” phase execution of Surefire (i.e. this time we run
it) it’ll run all of the tests except for the acceptance tests – these are explicitly excluded from the
execution in the “excludes” section. The other thing we want to do in this phase is quickly check
the unit test coverage for our project, and maybe make the build fail if the test coverage is below
a certain level.

Continuous Delivery

Methods & Tools * Summer 2012 * Page 16

To do this we use the cobertura plugin, and configure it as follows:
<plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>cobertura-maven-plugin</artifactId>
 <version>2.4</version>
 <configuration>
 <instrumentation>
 <excludes>
 <exclude>**/acceptance/*.class</exclude>
 <exclude>**/benchmark/*.class</exclude>
 <exclude>**/requestResponses/*.class</exclude>
 </excludes>
 </instrumentation>
 <check>
 <haltOnFailure>true</haltOnFailure>
 <branchRate>80</branchRate>
 <lineRate>80</lineRate>
 <packageLineRate>80</packageLineRate>
 <packageBranchRate>80</packageBranchRate>
 <totalBranchRate>80</totalBranchRate>
 <totalLineRate>80</totalLineRate>
 </check>
 <formats>
 <format>html</format>
 <format>xml</format>
 </formats>
 </configuration>
 <executions>
 <execution>
 <phase>test</phase>
 <goals>
 <goal>clean</goal>
 <goal>check</goal>
 </goals>
 </execution>
 </executions>
</plugin>

I changed the lifecycle phase that the cobertura plugin binds to, to stop it from running the
integration-test phase all over again. I’ve made it bind to the test phase only, so that it only
executes when the unit tests run. A consequence of this is that we can now change the maven
command we run, to something like this:
mvn clean cobertura:cobertura

This will run the Unit Tests implicitly and also check the coverage!

Executing the Acceptance Tests

In the second stage of the pipeline, which runs the acceptance tests, we can call:
mvn clean integration-test

Continuous Delivery

Methods & Tools * Summer 2012 * Page 17

Seapine QA Wizard Pro - Click on ad to reach advertiser web site

http://r.seapine.com/?s=32&c=74&ct=&m=3&d=177

Continuous Delivery

Methods & Tools * Summer 2012 * Page 18

This will again run the Surefire plugin, but this time it will run through the test phase (thus
executing the unit tests again) and then execute the integration-test phase, which actually runs
our acceptance tests.

You’ll notice that we’ve run the unit tests twice now, and this is a problem. Or is it? Well
actually no it isn’t, not for me anyway. One of the reasons why the pipeline is broken down into
sections is to allow us to separate different tasks according to their purpose. My Unit Tests are
meant to run very quickly (less than 3 minutes ideally, they actually take 15 seconds on this
particular project) so that if they fail, I know about it asap, and I don’t have to wait around for a
lifetime before I can either continue checking in, or start fixing the failed tests. So my unit test
pipeline phase needs to be quick, but what difference does an extra few seconds mean for my
Acceptance Tests? Not too much to be honest, so I’m actually not too fussed about the unit tests
running for a second time. If it was a problem, I would of course have to skip the unit tests, but
only in the test phase on the second run. This is doable, by using the failsafe plugin.

Deploying to Artifactory

The next thing we want to do is create a built artifact (a jar or zip for example) and upload it to
our artifact repository. We’ll use 5 artifact repositories in our continuous delivery system, these
are:

1. A cached copy of the maven central repo

2. A C.I. repository where all builds go

3. A Release Candidate (RC) repository where all builds under QA go

4. A Release repository where all builds which have passed QA go

5. A Downloads repository, from where the downloads to customers are actually served

Once our build has passed all the automated test phases it gets deployed to the C.I. repository.
This is done by configuring the C.I. repository in the maven pom file as follows:
<distributionManagement>
 <repository>
 <id>CI-repo</id>
 <url>http://artifactory.mycompany.com/ci-repo</url>
 </repository>
</distributionManagement>
and calling:
mvn clean deploy

Now, since Maven follows the lifecycle pattern, it’ll rerun the tests again, and we don’t want to
do all that, we just want to deploy the artifacts. In fact, there’s no reason why we shouldn’t just
deploy the artifact straight after the Acceptance Test stage is completed, so that’s what exactly
what we’ll do. This means we need to go back and change our maven command for our
Acceptance Test stage as follows:
mvn clean deploy

This does the same as it did before, because the integration-test phase is implicit and is executed
on the way to reaching the “deploy” phase as part of the maven lifecycle, but of course it does
more than it did before, it actually deploys the artifact to the C.I. repository.

Continuous Delivery

Methods & Tools * Summer 2012 * Page 19

Why I Don’t Use the Release Plugin

One thing that is worth noting here is that I’m not using the maven release plugin, and that’s
because it’s not very well suited to continuous delivery. The main problem is that the release
plugin will increment the build number in the pom and check it in, which will in turn kick off
another build, and if every build is doing this, then you’ll have an infinitely building loop.

Maven declares builds as either a “release build” which uses the release plugin, or a
SNAPSHOT build, which is basically anything else. But I want to create releases out of
SNAPSHOT builds, but I don’t want them to be called SNAPSHOT builds, because they’re
releases! So what I need to do is simply remove the word SNAPSHOT from my pom. Get rid of
it entirely. This will now build a normal “snapshot” build, but not add the SNAPSHOT label,
and since we’re not running the release plugin, that’s fine.

Warning: if you try removing the word snapshot from your pom and then try to run a release
build using the release plugin, it’ll fail.

Ok, let’s briefly catch up with what our system can do now:

• We’ve got a build pipeline with 2 stages

• It’s executed every time code is checked-in

• Unit tests are executed in the first stage

• Code coverage is checked, also in the first stage

• The second stage runs the acceptance tests

• The jar/zip is built and deployed to our C.I. repository, this also in the second stage of our
pipeline

So we have a jar, and it’s in our C.I” repository, and we have a code coverage report. But
where’s the rest of our static analysis? The build should report a lot more than just the code
coverage. What about coding styles and standards, rules violations, potential defect hot spots,
copy and pasted code etc and so forth??? Thankfully, there’s a great tool which collects all this
information for us, and it is called Sonar.

Sonar

Once you’ve installed Sonar somewhere (which is exceedingly easy), getting your builds to
produce Sonar reports is as simple as adding a small amount of configuration to your pom, and
adding the Sonar plugin to you plugin section. To produce the Sonar reports for your project,
you can simply run:
mvn sonar:sonar

So that’s exactly what we’ll do in the next section of our build pipeline.

Continuous Delivery

Methods & Tools * Summer 2012 * Page 20

So we now have 3 pipeline sections and we’re producing Sonar reports with every build. The
Sonar reports look something like this:

As you can see, Sonar produces a wealth of useful information which we can pour over and
discuss in our daily stand-ups. As a rule, try to fix any “critical” rule violations, and keep the
unit test coverage percentage up in the 90s (where appropriate). Some people might argue that
unit test coverage isn’t a valuable metric, but bear in mind that Sonar allows you to exclude
certain files and directories from your analysis, so that you’re only measuring the unit test
coverage of the code you want to have covered by unit tests. For me, this makes it a useful
metric.

Executing the Integration Tests

Moving on from Sonar now, we get to the next stage of the pipeline, and here I’m going to run
some Integration Tests (finally!). The Integration Tests have a much wider scope than the Unit
Test, and they also have greater requirements, in that we need an Integration Test Environment
to run them in. I’m going to use Ant to control this phase of the pipeline, because it gives me
more control than Maven does, and I need to do a couple of funky things, namely:

• Provision an environment

• Deploy all the components I need to test with

• Get my newly built artifact from the C.I. repository in Artifactory

• Deploy it to my test environment

• Kick of the tests

The Ant script is fairly straightforward, but I’ll just mention that getting our artifact from
Artifactory is as simple as using Ant’s own “get” task (you don’t need to use Ivy juts to do this):
<get src=”${artifactory.url}/${repo.name}/${namespace}/${jarname}-${version}”
dest=”${temp.dir}/${jarname}-${version}” />

The Integration Test stage takes a little longer than the previous stages, and so to speed things
up we can run this stage in parallel with the previous stage. Go allows us to do this by setting up
2 jobs in one pipeline stage, with jobs running in parallel. The Jenkins pipeline plugin has the
same functionality.

Once this phase completes successfully, we know we’ve got a decent build! At this point I’m
going to throw a bit of a spanner into the works. The QA team wants to perform some manual
exploratory tests on the build. Good idea! But how does that fit in with our Continuous Delivery

Continuous Delivery

Methods & Tools * Summer 2012 * Page 21

model? Well, what I did was to create a separate “Release Candidate” (RC) repository, also
known as a QA repository. Builds that pass the IT stage get promoted to the RC repository, and
from there the QA team can take them and do their exploratory testing.

Does this stop us from practicing “Continuous Delivery”? Well, not really. In my opinion,
Continuous Delivery is more about making sure that every build creates a potentially releasable
artifact, rather than making every build actually deploy an artifact to production – that’s
Continuous Deployment.

Our final stage in the deployment pipeline is to deploy our build to a performance test
environment, and execute some load tests. Once this stage completes we deploy our build to the
Release Repository, as it’s all signed off and ready to handover to customers. At this point
there’s a manual decision gate, which in reality is a button in my CI system. At this point, only
the product owner or some such responsible person can decide whether or not to actually release
this build into the wild.

They may decide not to, simply because they don’t feel that the changes included in this build
are particularly worth deploying. On the other hand, they may decide to release it, and to do this
they simply click the button. What does the button do? Well, it simply copies the build to the
“downloads” repository, from where a link is served and sent to customers, informing them that
a new release is available – that’s just one way of doing it. In a hosted environment (like a web-
based company), this button-press could initiate the deploy script to deploy this build to the
production environment.

A Word on Version Numbers

This system is actually dependent on each build producing a unique artifact. If a code change is
checked in, the resultant build must be uniquely identifiable, so that when we come to release it,
we know we’re releasing the exact same build that has gone through the whole pipeline, not
some older previous build. To do this, we need to version each build with a unique number. The
CI system is very useful for doing this. In Go, as with most other CI systems, you can retrieve a
unique “counter” for your build, which is incremented every time there’s a build. No two builds
of the same name can have the same counter. So we could add this unique number to our
artifact’s version, something like this (let’s say the counter is 33, meaning this is the 33rd build):
myproject.jar-1.0.33

This is good, but it doesn’t tell us much, apart from that this is the 33rd build of “myproject”. A
more meaningful version number is the source control revision number, which relates to the
code commit which kicked off the build. This is extremely useful. From this we can cross
reference every build to the code in our source control system, and this saves us from having to
“tag” the source code with every build.

I can access the source control revision number via my CI system, because Go sets it as an
environment variable at build time, so I simply pass it to my build script in my CI system’s xml,
like this:
mvn cobertura:cobertura -Dp4.revision=${env.GO_PIPELINE_LABEL}
-Dbuild.counter=${env.GO_PIPELINE_COUNTER"

Continuous Delivery

Methods & Tools * Summer 2012 * Page 22

p4.revision and build.counter are used in the maven build script, where I set the version number:
<groupId>com.mycompany</groupId>
<artifactId>myproject</artifactId>
<packaging>jar</packaging>
<version>${main.version}-${build.number}-${build.counter}</version>
<name>myproject</name>
<properties>
<build.number>${p4.revision}</build.number>
<major.version>1</major.version>
<minor.version>0</minor.version>
<patch.version>0</patch.version>
<main.version>${major.version}.${minor.version}.${patch.version}</main.version>
</properties>

If my Perforce check-in number was 1234, then this build, for example, will produce:

myproject.jar-1.0.0-1234-33

And that just about covers it. I hope this is useful to some people, especially those who are using
Maven and are struggling with the release plugin!

DSDM

Methods & Tools * Summer 2012 * Page 23

DSDM Atern Overview

Matthew Caine
M.C. Partners & Associates, http://www.mcpa.biz/

DSDM (Dynamic Systems Development Method), the longest-established Agile method,
launched in 1995, is the only Agile method to focus on the management of Agile projects. Arie
van Bennekum represented DSDM at the launch of the Agile Alliance and their Agile Manifesto
in 2001. DSDM has mainly operated in the corporate environment where it consistently
demonstrates its ability to successfully work within and complement existing corporate
processes. Practicing evolutionary development itself DSDM’s latest version (Atern)
incorporates those improvements.

This article provides a high-level introduction to Atern: its structure and phases, principles, roles
and responsibilities and a brief look at the products.

The Structure of an Atern Project

Atern differs from more common agile approaches as it encompasses the entire project lifecycle
and not just software development (where Scrum prevails). It incorporates project management
disciplines and provides mechanisms to ensure that the project benefits are clear, the proposed
solution is feasible and there are solid foundations in place before detailed work is started.

There are seven phases to an Atern project:

http://www.mcpa.biz/

DSDM

Methods & Tools * Summer 2012 * Page 24

Jama Contour Collaborative Requirements Management - Click on ad to reach advertiser web site

http://www.jamasoftware.com/contour/trial-methodsandtools.php

DSDM

Methods & Tools * Summer 2012 * Page 25

Phase Key Responsibilities
Pre-project Initiation of the project, agreeing the Terms of Reference for the work
Feasibility Typically a short phase to assess the viability and the outline business case

(justification).
Foundations Key phase for ensuring the project is understood and defined well enough so that

the scope can be baselined at a high level and the technology components and
standards agreed, before the development activity begins.

Exploration Iterative development phase during which teams expand on the high level
requirements to demonstrate the functionality

Engineering Iterative development phase where the solution is engineered to be deployable for
release

Deployment For each Increment (set of timeboxes) of the project the solution is made available.
Post project Assesses the accrued benefits.

The Exploration and Engineering phases are often merged, as the method is flexible, allowing
them to be organized to best suit the situation. Some examples are provided below:

Example 1 illustrates iterative development with the solution evolving over a number of
Exploration- Engineering cycles before Deployment of an increment.

DSDM

Methods & Tools * Summer 2012 * Page 26

Example 2 completes all Exploration activities prior to commencing the Engineering activities.
The timeboxed Iterative Development occurs within the stage as opposed to the previous and
following example. This approach is not to be confused with a traditional waterfall approach.

DSDM

Methods & Tools * Summer 2012 * Page 27

Agile 2012 Conference - Click on ad to reach advertiser web site

http://agile2012.agilealliance.org/

DSDM

Methods & Tools * Summer 2012 * Page 28

Example 3 combines Exploration and Engineering work to deliver fully engineering subsets of
the end product in a single pass.

DSDM

Methods & Tools * Summer 2012 * Page 29

Example 4 reflects a more complex scenario with two teams involved. For simplicity, two teams
are shown but, in practice, several teams could be involved if the size and complexity requires
them. One team concentrates on exploratory work and the other on engineering. In this example,
the Exploration team might deliver prototypes of the solution to the Engineering team who then
build solutions for Deployment.

Atern Principles

Many organisations guide general behaviour with high-level values and culture. Well-
understood principles are better guides than detailed process procedures. In Atern principles are
used to provide guidance throughout the project.

Atern has eight underlying principles and the complete framework can be directly derived from
these. The principles are based on best practice in its truest sense. They define “the way things
are done”.

Breaking one of these principles can lead to failure, as these are the basic building blocks for
Atern, and bind together all the other elements of Atern.

Principal Description

Focus on the Business Need
Deliver what the business needs when it needs it. The true
business priorities must be understood with a sound business
case.

Deliver on Time
Timeboxes are planned in advance and the timeframe set. The
dates never change; features are varied depending on business
priorities, in order to achieve the deadline.

Collaborate

Teams work in a spirit of active co-operation and commitment.
Collaboration encourages understanding, speed and shared
ownership. The teams must be empowered and include the
business representatives.

Never Compromise on
Quality

A solution has to be “good enough”. The level of quality is set at
the outset. Projects must test early and continuously and review
constantly.

Build Incrementally from
Firm Foundations

Increments allow the business to take advantage of work before
the final product is complete, encouraging stakeholder confidence
and feedback. This is based on doing just enough upfront
analysis to proceed and accepting that detail emerges later.

Develop Iteratively
Accept that work is not always right first time. Use Timeboxes to
allow for change yet continuously confirm that the solution is the
right one.

Communicate Continuously
and Clearly

Use facilitated workshops, daily standups, modeling, prototyping,
presentations and encourage informal face-to-face
communication.

Demonstrate Control
The team needs to be proactive when monitoring and controlling
progress in line with Foundations Phase. They need to constantly
evaluate the project viability based on the business objectives.

The Roles and Responsibilities of an Atern Project

Atern defines the roles and responsibilities in such a way that it easy to imagine how existing
roles and positions would fit into an Atern project.

DSDM

Methods & Tools * Summer 2012 * Page 30

Descriptions for each role are described on the next page.

DSDM

Methods & Tools * Summer 2012 * Page 31

Project Roles

Role Key Responsibilities
Business Sponsor Owns the business case. Ensures funding and resourcing. Guarantees effective

decision-making and deals with escalations rapidly.
Project Manager Entry point for project governance. High-level planning. Monitors progress,

resource availability, project configuration, manages risk and escalated issues.
Business Visionary Owns the business vision and impact on wider business changes. Monitors

progress against the vision. Contributes to key requirements, design and
review sessions.

Technical Coordinator Agrees and controls technical architecture. Advises and co-ordinates teams.
Identifies and manages technical risk. Ensures non-functional requirements are
met.

Solution Development Roles

Role Key Responsibilities
Team Leader Focuses team to deliver on time. Encourages full team participation. Manages

detailed time box activities and day-to-day activities. Ensures testing and
review activities are scheduled and completed.

Business Ambassador Contributes to all requirements, design and review sessions. Provides the
business view for all day-to-day decision making. Describes business
scenarios to help design and test the solution. Provides assurance that the
solution is correct. Coordinates business acceptance.

Solution Developer Creates the solution and participates fully in all appropriate QA activities.
Solution Tester Works with business roles to define test scenarios for the solution. Carries out

full technical testing reporting results to the Team Leader and Technical
Coordinator.

Business Analyst Supports communication between business and technical members of the
team. Manages all required products related to business requirements. Ensures
business implications of day-to-day decisions are properly thought through.

Business Advisor Provides specialist input, for example an accountant or a tax advisor. Usually
an intended user of the solution.

Other Roles

Role Key Responsibilities
Atern Coach Helps teams new to Atern teams get the most out of Atern. Tailors Atern for

the needs of the project. Not all aspects are needed all the time!
Workshop Facilitator Manages and organizes workshops. Responsible for the context not the

content. Independent.
Other Specialists Experts required on a short-term basis, possibly technical e.g. Load-Test

specialists etc.

The Atern Products

Deliverables are associated with each phase of the lifecycle. These are referred to as products.
Not all products are required for every project and the formality will vary according to the
project and organisation. Influencing factors could be contractual relationships and corporate
standards.

Some products are specific to a particular phase in the lifecycle, others may continue to evolve
through subsequent phases.

DSDM

Methods & Tools * Summer 2012 * Page 32

The basic flow of products through the lifecycle is shown below. For instance, the Feasibility
Assessment enhanced with Business Foundations and the Prioritised Requirements List (PRL).
Similarly, the Outline Plan is refined into the Delivery Plan for the project that in turn the teams
refine to create the individual Timebox Plans and the Deployment Plan for an increment.

Atern allows the project to decide for itself how the products are built or what they should look
like, allowing products to be tailored to most environments. Indeed, some environments will
require all products and others only the PRL and Evolving Solution (similar to Scrum).

Knowledge Management

Methods & Tools * Summer 2012 * Page 33

Knowledge Management and Software Organizations

Bhaskar Raju, bhaskar_raju [at] xyratex.com
Xyratex Technology Limited, http://www.xyratex.com/

Is it hard to get expertise in the work place for employees?
Are you not able to handle the ever changing requirements and improve the quality?
Are you not able to manage teams effectively and improve employee productivity?
Is the ‘skills gap’ widening in your teams?

Organizations are looking for better management options, to address the above questions. To
deal with the issues in this truly competitive and fast-paced business environment, it is essential
for organizations to recognize the value of knowledge and manage the knowledge assets. Many
organizations don’t realize how much Knowledge Management (KM) contributes to
phenomenal growth of organizations by transforming new as well as existing enterprise
knowledge into superior products/services/solutions. This article emphasizes the significance of
KM practices in the context of the software industry in resolving above issues. It will also
covers how knowledge conversion takes place in organizations, why organizations fail to utilize
Knowledge Management in solving the business problems in long-term and how KM can be
implemented effectively with best practices.

Changing nature of customer needs / requirements

Frequently changing customer requirements and high levels of customer expectations exist in
almost all the domains of software industry. This became challenging for various teams in these
software organizations that have to balance autonomy with the need to respond to external
forces and inter-team responsibilities. In this context, various skills, capabilities or competencies
which make up software team’s know-how factors are considered to be the principle resources
of organizations [1]. Managing the team’s knowledge plays an important role in developing
these skills, capabilities or competencies for successful release of products/services to the
customers.

Understanding knowledge management

Knowledge management is the process that involves a cycle of exchanging tacit knowledge and
converting it to explicit knowledge and then re-formulating it through an individual’s
experience and other factors (such as belief, perspective, and values) into tacit knowledge [2].

Adminitrack Issue & Defect Tracking - Click on ad to reach advertiser web site

http://www.xyratex.com/
http://www.adminitrack.com/bugtracking.aspx

Knowledge Management

Methods & Tools * Summer 2012 * Page 34

According to literature, there are two main types of knowledge: tacit and explicit. Tacit
knowledge refers to personal knowledge embedded in individual experience and involving
intangible factors. This type of knowledge can be considered to be very difficult to transfer. On
the other hand, explicit knowledge refers to the one that has already been documented and
articulated into formal language, and can be much more easily accessible and transferred among
individuals. Hence, one of the key functions of a KM strategy is to make tacit knowledge
explicit.

The success of an organization depends on how well, it converts tacit knowledge into explicit.
According to Nonaka, who is best known for his study on Knowledge management, there are 4
types of knowledge conversion between tacit and explicit knowledge [3]. According to his
model of knowledge creation and transformation, tacit knowledge is exchanged with tacit
knowledge through socialization. Tacit knowledge can be converted to explicit knowledge
through externalization where the hidden know-how is expressed and articulated through
metaphors, models, concepts, equations and other forms of explanation. Explicit knowledge can
be exchanged and developed through communication. Explicit knowledge is converted into tacit
knowledge through internalization where individuals absorb it through experience, testing
and/or simulating their use of operational knowledge. Hence, these four different types of
conversion can promote the generation of important intangible knowledge assets which
contribute to long lasting competitive advantage.

KM to solve software organization problems

We describe below various challenges that software organizations are facing in the process of
meeting the high customer expectation levels and how KM practices can help them to face these
challenges.

Global distributed teams: An increasing number of software organizations are relying on
technology-enabled geographically distributed teams. For example, mobile phone software
development teams in various organizations spread across different locations employs
experienced developers in different countries to solve their technical challenges and develop
new features. In this context, managing teams effectively at different locations is a challenging
task for any organization. Improving productivity and driving them towards the same goal
requires readily sharing information across sites. Formal KM systems can facilitate this.

Knowledge Management

Methods & Tools * Summer 2012 * Page 35

By enabling efficient sharing mechanisms to developers, KM plays important role if
organization is also involved in Open Source Software projects, as the quality of the deliverable
depend on how well the parallel development on independent software components across
global teams are synchronized.

Iterative-incremental development: Due to the increasing demand by customers to change
requirements very frequently, iterative-incremental development approaches are becoming
popular in many of software organizations. On average, projects can be divided into 12 one- to
four-week iterations. As development involves successive iterations, the required time can be
reduced based on the experience gained from past iterations. Unless the knowledge developed in
each iteration is managed efficiently and change control mechanisms are in place, it becomes
very complex for organizations to deliver project without delays and cost overruns. KM defines
a standard process, so that engineers will record the related knowledge in each iteration into
knowledge based databases and systemizes knowledge acquisition process. By making
knowledge acquisition processes continuous, KM combines the knowledge developed on
requirements, functionality, design, coding, testing in earlier iterations and reconnects it to the
required knowledge for implementation in future iterations.

Quick testing life cycles: During the last phase of quick software development life cycles, test
teams aimed to capture defects by integrating software, hardware and computer systems.
Nowadays, test life cycle times are becoming shorter and shorter due to the need for quick
delivery to customers. This situation demands good knowledge on the overall system, supported
features, and strong analysis as well as decision making capabilities to ensure defects do not
escape in the software releases. To complete test cycles quickly, organizations are looking for
various automation testing methods which are reliable in terms of reusability and productivity
compared to manual testing. Even though testing is executed automatically, test teams require
knowledge of various tested features and scripts, and analytical capabilities to isolate software
issues in the system. With experience in problem solving well-defined in knowledge based
database, test engineers can always search for related issues raised in past cycles and reuse the
solution [4]. Besides that, KM systems provide a search and consult mechanism to support test
engineers in information search and decision making. With less effort spent on unnecessary
issue investigation combined with effective analysis, test cycle will be completed more quickly
thus contributing to test efficiency.

Merger and acquisitions: Today’s trends towards mergers and acquisitions increases the
challenge of integration. This can pose major threat to organizations that might struggle to take
certain organizational decisions, fearing to loose knowledge by reducing the teams. Once the
KM system has achieved a matured level, the system may be enhanced or evolved to a more
intelligent system that is capable of decision making. If the knowledge-based rational decisions
are not taken, people critical to core competencies may walk away and put the organizations at
risk. Successful organizations have a key part of their success in their expertise to manage
knowledge systems.

Small-medium organizations: No matter at what stage of development life cycle we are at and
no matter the size of organization, KM practices are significant. Let’s look at the example of
small and medium sized software organizations in data storage domain. Given the growth
opportunity for the data storage markets, various small and medium sized organizations design
and develop a range of advanced, scalable data storage solutions for the Original Equipment
Manufacturer (OEM) community. OEMs are highly dependent on organizations which provide
enterprise-class data storage subsystems. The software divisions in these small/medium
organizations are experts in delivering bespoke software solutions to their customers based on
their requirement. Different sub-teams within the same software group develop and cut the

Knowledge Management

Methods & Tools * Summer 2012 * Page 36

release branches quickly and with top-notch quality designed to meet every client's needs. The
question arises on how to handle the ever changing requirements and improve the quality of
code. Even though the bespoke software solutions developed on the same trunk of code, it’s
very important for these teams to share best practices and relevant differential knowledge across
sub-teams. KM encourages team members to record significant changes during bespoke
software development and this will be shared across different sub-teams to re-integrate this
learning. This gives opportunity to better exploit existing knowledge assets by re-deploying
them to their sub-teams, modifying knowledge from a past process to create a new solution.

Another challenge for these organizations to manage multiple sub-teams by moving the team
members depending on the workload to meet growing customer expectation levels. In these
small/medium organizations, with lack of consistent processes across the organization, most of
projects will be dominated by few more experienced team members. If the efficient KM systems
are not placed in organizations where individual resources play a critical role, team members
will find it hard to get the expertise on the overall systems. By setting up a mentoring
relationship between experienced experts and new members, implementing a document
management system to provide access to key explicit knowledge, KM tries to tap into experts’
knowledge banks and share their know-how with others.

Software outsourcing models: Due to the popularity of software outsourcing models,
organizations are moving their work to lower cost destinations such as India and the Far East to
gain cost advantage. This has posed its own set of challenges as well as opportunities, since
countries like India with a well-educated and experienced workforce also have severe talent
shortages. Organizations in these countries are developing comprehensive and forward-looking
strategies to recruit, develop, and retain the best professionals. As attrition rates are very high
due to the high demand of skill sets, organizations must concentrate on an efficient cycle of
exchanging tacit knowledge and converting it to explicit knowledge. With experienced members
leaving the team and with increasing numbers of new recruits, skill gaps widen within the
teams. KM practices provide effective tools for smooth knowledge transfer to new team
members and give the opportunity to build competencies by narrowing the skills gap.

Why do organizations fail to utilize KM?

Technology, people, practice

Despite the fact that KM adds so much value to the organizations in long-tem, most of
organizations fail to utilize KM in solving the business problems. At the initial stage,
organizations may try to align KM with the overall business objectives, but they often fail to
retain these practices over time. The reason for this is that organizations fail over a period of
time to distinguish between applications that manage explicit knowledge and the whole KM
process.

Management has to invest a lot of money in KM systems and spend a lot of time managing the
applications such as databases or searchable repositories. Even while reviewing KM projects,
they emphasis more on KM systems and cataloguing existing explicit information. For
successful KM, this is not enough. There must be efficient cycles of exchanging tacit knowledge
and converting it to explicit knowledge and then re-formulate it through an individual’s
experience and other factors (such as belief, perspective, and values) into tacit knowledge. By
practicing these cycles of conversion and updating the system regularly with explicit knowledge
during this conversion process, teams can benefit from KM activities.

Knowledge Management

Methods & Tools * Summer 2012 * Page 37

For instance, in software organizations, testing teams put a significant amount of effort into
validation and verification of software release by the development teams. In some cases, efforts
spent by the developers will result in defects being closed as duplicate or "as designed". These
organizations will have efficient systems to log test information, but they forget to account for
certain critical elements which enable knowledge sharing between their employees. We must
agree that knowledge dies when it is disembodied [5]. By promoting a knowledge sharing
culture within the teams, management must reduce the team's efforts spent in reinventing the
wheel activities.

As KM is a combination of technology, culture and practices, management must put equal
efforts into all the three aspects for successful implementation [6]. Along with the technology,
management should promote a knowledge reuse/sharing culture within the teams and this must
be practiced by making knowledge acquisition process continuous. Without a balanced
approach for these three aspects, it will be hard to use KM to manage teams effectively.

Tips for better practices

Clearly identify business problems and align knowledge management project with overall
business objectives.

Like any other software project, KM projects goals and objectives must be aligned to high-level
objectives. This will give visibility to the management about how the KM activity is going to
solve business problems. Let’s see with an example how this is aligned by using the GQM (Goal
Question Metrics) approach.

Knowledge Management

Methods & Tools * Summer 2012 * Page 38

In the above diagram, business goals, strategies, and corresponding software goals were made
explicit [8]. The business goal is “improve customer satisfaction”. This business goal might
have been made by the organization due to the business problem such as so many post-release
issues in the recent deliverable. To achieve this business goal and to solve the business
problems, the software team sets its goal to “improve system test effectiveness”. This software
goal might have been made by the management due to the problems within their test teams such
as widening skills-gap, poor handling of changing customer requirements etc.

To achieve the software goal of “Improve system test effectiveness”, software project managers
from their view point define their team’s goals, refine those goals down to specifications of data
to be collected, and then analyze and interpret the resulting data with respect to the original
goals. For this, a possible GQM goal could be

• Purpose: Improve

• Focus: the timelines of

• Object: software defect fixing

• Viewpoint: from the project manager’s view point

• Context: the characteristics of a software team in organization

This goal is then refined into specific questions that must be answered in order to evaluate the
achievement of the goal. Relevant question and associated metrics related to the above goal are

• Question: What is the current software defect fixing speed?

• Metrics: Average life Cycle time of defect
Standard deviation
% cases outside the upper limit

At this level, the KM project measurements must be linked to the above metrics, so that KM
project will be aligned with overall business objectives.

Knowledge Management

Methods & Tools * Summer 2012 * Page 39

For example, the most tangible measurements of KM system involve who contribute or access
which information. We need to track whether particular software development/test team
members are regularly contributing and accessing the information. If yes, how many visits made
to KM systems in a particular interval of time. If we can see the correlation between above
metrics and KM system metrics, there will be significant impact of KM in project activities in
achieving software goals. For instance, if there is negative correlation between number of visits
and average cycle time of defect fixing, KM is making positive impact on the software teams.

Define clear roles and responsibilities to lead KM practices.

For successful implementation of KM, a well staffed team and strong leader, with clearly
defined responsibilities are essential. Normally, the KM leader will be selected by the higher
management, based on individual’s expertise on project management and people skills. As a
KM team leader, it is the responsibility of team leader to give guidance in organizing content
and apply project management skills. In addition to this, he has the responsibility to improve his
broad knowledge on various software sub-teams and start interacting with team members to
contribute to KM. He also be attending various conferences and should bring latest trends of
KM practices into the organization.

KM team members will be subject matter experts from each sub-team within the software
division. They include members from software development team, testing team, automation
team, etc. As a KM team member, he/she must be familiar with content and process involved.
It’s the responsibility of team members to categorize information efficiently. They must be
monitoring content regularly and should assess the relevance of existing information. This is
particularly useful if other teams looking for relevant information, they will be prevented from
information overload.

There must be clear responsibilities defined to IS team members in KM projects. It’s IS
responsibility to analyze the existing systems and customize KM technical infrastructure. There
will be cases of bottlenecks resulting from inadequate hardware or software, for which IS have
the responsibility to resolve them.

The KM team roles outlined above are integrated in the project teams. There are so many
advantages of having KM team like this. The biggest hurdle for many KM teams is identifying
the team’s tacit knowledge. If the KM team roles are integrated into project teams, identification
of tacit knowledge within each team becomes very easy. KM team member of that particular
project team will have good idea of individuals with tacit knowledge and the team members in
need of particular knowledge. This helps the KM team to apply efficient ways of knowledge
conversion from experience experts and the rest of the teams. And as the KM team member is
integrated in the project team, he can assess the workload among individuals within his team
and be able to find the right time to initiate knowledge conversion activities. For instance, when
the project delivery date approaches, software test teams will be very busy with system testing
activities. Forcing the test team members to be involved in KM activities at the peak times of
execution might create negative impressions on the overall KM process. Software test team
members will consider KM as additional work load imposed on them. The ideal time for these
teams to share knowledge is during the break between each cycle of execution. Once the first
cycle of execution completed, there will be little delay for the next build to arrive from
development teams and to start the next cycle of execution. As a KM team member, from the
same project team, he/she will be able to analyze efficiently what tacit knowledge from the
earlier cycle of execution need to be shared and the suitable times for his/her team members to
share the knowledge either into the KM system or with the rest of the team members directly.

Knowledge Management

Methods & Tools * Summer 2012 * Page 40

There is a disadvantage of having KM team roles integrated into project teams. Normally, KM
needs blend of people who have expertise in training skills, facilitation/influencing skills,
communications skills and technology skills. In few cases, it becomes very difficult to find
someone for KM team role with all these skills. Even when the KM roles are integrated in
project teams, due to the lack of right people with right skills, KM will not have a major impact
on the project activities.

To bring these additional skills to the team, like any other project management teams, KM
teams can be filled with external consultants, who have expertise in dealing with KM related
issues. There pros of engaging consultants in KM, such as

• Provide skills not within firm

• Counter internal constraint

• Mitigate risk

• Advise on IS/IT

• Overcome internal resistance to change

• Achieve change with greater speed than allowed by internal organic change

However, there are cons for this approach. In addition to higher costs, as the external people
lack the idea of in-house procedures, there is possibility of developing gap between KM teams
and project teams. The project team members understand KM team members as specialists who
know nothing about their team’s domain knowledge and required tacit knowledge need
conversion. This will lead to the de-motivation of team members contributing to knowledge
conversion activities.

If the required KM skill sets are available within the team or there is scope to develop these
skills within the teams, it will be good to have KM roles integrated in project teams. Due to this,
the gap can be narrowed b/w KM and rest of the teams. But, it will be hard to define what
percentage of project activities should be used for formal KM, as it varies based on the size of
team, amount of tacit knowledge need to be converted and the complexity of the required
knowledge.

Implement KM in phased approach.

Similar to incremental approaches applied to various software development projects, KM also
needs an incremental approach with different phases. This will reduce the amount of risk
involved in these KM activities. You should divide the KM solution into various parts and
address specific parts of KM solution in each phase. By laying foundation for next phase, each
phase must provide immediate benefits and provide measurable ROI.

For instance, this can be made effective by addressing the need of unified access to existing
information as part of the initial phase. And in the later phases, you address the need of
improving the way knowledge is captured from various software sub-teams and managed.

Customize KM technical infrastructure to make it user-friendlier.

An organization KM system is the collection of information technologies used to facilitate the
collection, organization, transfer and distribution of knowledge between various teams in
software division.

Knowledge Management

Methods & Tools * Summer 2012 * Page 41

Software organizations are using various technologies such as document libraries (ex: Google
docs), Knowledge Bases (wiki, etc.), blogs, forums, SharePoint, etc.

A wiki is an extremely powerful KM tool for creating, maintaining and accessing knowledge
bases. Since the introduction of the wiki technology in the early 2000s, many organizations have
adopted the wiki for many of their knowledge bases. There are however a few disadvantages to
wiki, as wiki platforms have a bit of a learning curve. Team members have to learn how to use
it. If it becomes complex, team members will be reluctant to contribute to KM systems.

KM teams should know how to use wiki to their best effect and make the project team members
aware of it. As everyone contributes to wiki, over a period of time it will end-up in mess, unless
it’s well organized. Information is often added to wikis but not deleted when no longer relevant
or accurate or updated when changed.

This type of pros and cons exist for all technologies. For this reason, KM has to maintain and
organize the technical infrastructure to make it user-friendlier. They can customize the KM
system to rely on multiple technologies based on the team member’s convenience. The success
of KM depends on how well we customize technical infrastructure to make it easy to find the
information from the KM systems. That means, if development team members are looking for
some information related to test teams, they should easily find the information about the test
team and more importantly the relevant information. Applications must be more focussed to the
expected information and user friendly. If possible, it needs to blend in with the existing
corporate systems such as organization intranet.

Encourage employees to contribute to KM by knowledge reuse and sharing.

As discussed earlier about Nonaka’s model of knowledge conversion between tacit and explicit
knowledge, software teams must be encouraged to contribute to these conversion activities.

Conduct as much knowledge sharing sessions as possible within the teams and across the teams.
This can be conducted in various instances such as

• Whenever major issues noticed while development,

• New lessons learnt while carryout particular development/testing,

• Discussion on show stopper issues and the way to debug it

The management is responsible to decide which topic and how frequently the knowledge
session should be held based on work priority. This is to ensure that the sharing sessions will
really benefit the engineers and suits to their interest as well. The management must reward
engineer’s initiatives to contribute to such sessions.

The size of the organization or team will have the influence on knowledge sharing activities in
terms of knowledge flow. As the size of an organizational unit increases, the effectiveness of
internal knowledge flows dramatically diminishes and the degree of intra-organizational
knowledge sharing decreases [9]. Management can overcome this by divisionalized organization
structure or categorization of big teams into various sub-teams and using the appropriate user-
friendly KM systems.

Knowledge Management

Methods & Tools * Summer 2012 * Page 42

Knowledge re-use is another most important activity in achieving the benefits of KM projects.
For example, if the software test teams are in need of any third party tools, management/team
members must do basic assessment using KM systems before purchasing the tool. Assessment
such as

• Is any other team working on similar feature in the organization?

• Are there similar tools used in different contexts?

• Are there any domain experts in this area? (use knowledge directories to find this)

• Can other team’s knowledge be used in developing an in-house tool?

All these assessments are quickly possible with efficient KM system and routine knowledge
reuse activities. In the above case, if team can reuse existing knowledge and develop in-house
tool, it will save lot of money to the project and this tool can be re-used by other teams
whenever required without any licensing issues like in third party tools.

As mentioned earlier, the size of the software organization influences the cost/benefits of the
KM tools. For instance, small organizations or start-ups will not have sufficient funds to invest
in KM tools. At the same time, if the size of the organization is very small, they don’t have to
rely much on KM tools and related technologies, but they can stimulate the knowledge flows
using soft approaches such as face-to-face knowledge transfer, group sharing methods etc.
Overall, organization management has to consider these aspects of cost/benefits with regards to
size of the organizations before investing in KM tools or activities

Make knowledge acquisition process continuous.

KM is not an end itself. The knowledge acquisition process must be continuous in order to keep
all knowledge up-to-date and ensure new knowledge is captured from time to time.

To support this, proper process needs to be defined as well, so that team members will record all
related knowledge into the database. If a team member wants to share his tacit knowledge on a
particular software, process, new methodologies, he should be given idea on the ways of sharing
his knowledge with other team members, teams at organization level and ways of converting
into explicit knowledge.

By doing this, knowledge acquisition task will be formalized within the software teams. This
will help KM team to capture knowledge gained by the team members in a more effective way
and continuously. While contributing to KM systems, another big challenge for the KM team is,
whether to give free access to all project team members for contribution to KM systems? Or
whether knowledge contributed to the KM tools will be "gated and selected" by the KM team?

In earlier sections, we have examined the benefits of organizations appointing KM roles
integrated into project teams. In this context, it will be more beneficial, if every project team
member is able to contribute their job related knowledge directly to KM systems. But, if the
content of KM systems is not maintained properly, this will lead to information pollution and
the users abandoning the systems.

To overcome this, KM team has to put more emphasis on content addition/modification/deletion
at the initial stages of KM activities. And even deciding what kind of tacit knowledge must be
entered into the systems. Once the project team members are trained on the format of
contribution to KM systems and the relevance of appropriate tacit knowledge, KM team
members can review the content regularly to verify the compatibility with the proposed KM

Knowledge Management

Methods & Tools * Summer 2012 * Page 43

standards. At the initial stages, write permissions to KM systems are granted to few experienced
project team members and based on the user activity and approval from KM team, it will be
extended to rest of the team members.

Another aspect of managing the knowledge in KM systems, involves handling special cases,
such as team members who leaves the company. KM team needs to be able to make sure other
team members do not waste time trying to contact that person while preserving the knowledge
they have contributed.

Review the KM project regularly

KM projects must be reviewed regularly to assess what is missing and finding ways to better
organizing knowledge. The review begins by breaking the information into two categories:

1. What knowledge currently exists

2. What knowledge is missing

Once the location or source of the missing information is identified, KM teams can begin to
structure the relevant information so that it can be easily found.

One of the common mistakes that most of the teams do while review process is to put more
emphasis on cataloguing existing explicit information assets or the information that is
documented, transferable and reproducible (ex: test reports, project proposals, ...). During the
review process there should be however more emphasis on reviewing the cycles of knowledge
conversion.

If the software test team has bought a particular third party component recently to test the
features and debug the issues easily, in the review process they must review the efficient ways
of how the tacit knowledge on the component translated to explicit knowledge. In addition to
this, management must regularly review the alignment of current KM measurements with other
project metrics and high-level goals.

Balance between technology, culture and practice.

For KM to be successful, as mentioned in earlier section, there must be a balancing act between
technology, culture and practice. This can be achieved by placing the desire of people to
use/involve in KM activities ahead of the technology. This needs cultural change within the
teams and support from the management. For team members, if given the required time, training
and incentives, they will begin to capture, manage and share knowledge with enthusiasm.

In addition to this, management must try to eliminate traditional rivalries between team
members. This involves changing perception of employees: “to stay strong, I have got to hide
and protect what I know." With this perception, most of the experienced team members will be
reluctant to contribute to the KM activities. Here management has to play key role in changing
the mindsets of the team members. Management has to assure that there will not be any threat to
their positions by doing that. To resolve this, management has to create a supportive and
collaborative culture by rewarding the individuals who contribute to KM activities. The
performance appraisal criteria have to be changed to rate performance based on employee’s
cooperative efforts. Overall, cultural changes of this magnitude take time, so they have to
practice this continuously to see the results of KM.

Knowledge Management

Methods & Tools * Summer 2012 * Page 44

Share the success stories of KM practices at organization level.

Normally, two thirds of KM effort needs to focus on non-technical issues such as culture and
practice. For making this effective, the management must use motivational approaches such as
sharing success stories about KM implemented recently within their organization. If KM has
been implemented successfully in software test development teams, the positive impact of KM
within test development teams must be shared with other development teams, test teams and
sustainable teams within the software divisions. These positive impacts could be how the tools
development process has been improved, quick fixing of the tools issues, reduced attrition rates
and shortening skills gap within the test development team. By doing this, it will stimulate the
team member’s curiosity to be involved in KM activities and help the KM team to apply KM
methodologies in other parts of the organization.

Conclusion:

This article summarizes various challenges software organizations are facing in terms of global
distributed teams, quick testing lifecycles, outsourcing models etc., and how KM can be
implemented effectively with the best practices. To resolve the above mentioned issues software
teams facing at the moment, KM practices make very high impact in long-term. For this,
management/team members must be committed to implementing the above practices over a
period of time to achieve better results. Like any other management methodology, there is no
“one size fits all” type of method to implement Knowledge Management. As this whole process
involves cultural changes of significant magnitude, teams must be patient and practicing this
continuously to see the bottom line results.

References

1. Johnson, G and Scholes, K (2002) Exploring Corporate Strategy, 6th Edition, Prentice Hall

2. Ted E. Lee , “Applying Knowledge Management Approach For Software Testing”

3. Ikujiro Nonaka, “A Dynamic Theory of Organizational Knowledge Creation”

4. Ong Kein Wei, Tang Mei Ying, “Knowledge Management Approach in Mobile Software
System Testing”

5. Anne Stuart, “5 Uneasy Pieces, Part 2, Knowledge Management,” CIO Magazine, June 1,
1996

6. Tom Davenport, “Known Evils, Common Pitfalls of Knowledge Management,” CIO
Magazine, June 15, 1997

7. 2010 Global Most Admired Knowledge Enterprises (MAKE) Report --
www.knowledgebusiness.com/

8. Basili, Victor R; Mikael Lindvall, Myrna Regardie, Carolyn Seaman, Jens Heidrich, Jurgen
Munch, Dieter Rombach, Adam Trendowicz (2010). "Linking Software Development and
Business Strategy Through Measurement". Computer 43 (4): 57–65.

9. Alexander Serenko, Nick Bontis, Timothy Hardie, (2007) "Organizational size and
knowledge flow: a proposed theoretical link", Journal of Intellectual Capital, Vol. 8 Iss: 4,
pp.610 - 627

http://www.knowledgebusiness.com/

Erlang

Methods & Tools * Summer 2012 * Page 45

Erlang Open Telecommunications Platform

Francesco Cesarini, francesco [at] erlang-solutions.com
Erlang Solutions Ltd., http://www.erlang-solutions.com/

Telecommunications technology headlines are dominated these days by new mobile devices and
their operating systems. The steady evolutionary march of radio access standards also grabs
column inches as too do the latest innovations in operational/business support systems
(OSS/BSS) solutions. Middleware developments seem to swing in under the media radar.

In fairness to the telco press, middleware developments can be bewildering and esoteric.
Software development is perhaps not viewed as ‘telco’ so much as pure IT and so it is left to the
very specialist press to cover innovations in the field. Middleware though is the unsung hero of
telecommunications networks.

Choosing the right middleware can be the difference between an exciting new offering
launching on budget and ahead of the rivals or damagingly late and ruinously expensive. With a
wide variety of programming languages, such as Erlang, Java, C and C++ available, choosing
the right middleware depends on a range of factors.

Erlang Programming Language

Erlang was originally invented by the Ericsson computer science lab as the programming
language of choice for the next generation of telecom systems. While Erlang is a powerful
programming language used to build distributed, fault tolerant systems with requirements of
high availability, these complex systems require middleware in the form of reusable libraries,
release, debugging and maintenance tools together with design principles and patterns used to
style network architecture.

Ericsson realized this early and initiated a project to address issues in parallel with its first
commercial project. Work began on the creation of the Open Telecom Platform, often referred
to as OTP. Open, in this instance, stands for the openness of Erlang towards other programming
languages, APIs and protocols. While Telecom was chosen when Erlang was only used
internally within Ericsson for telecom products, years before it was released as open source. It
might have made sense in the mid 90s, but today we say Telecom refers to the distributed, fault
tolerant, massively concurrent soft real-time characteristics present in telecom systems, but valid
in a wide range of other industry verticals. Platform refers to the use of OTP as middleware in
complex systems.

Prior to its release as open source, OTP was used to develop many turnkey telecom solutions
with millions of lines of code, including the AXD301 ATM switch, the GGSN IP gateway node
and SGSN support node, two components handling core functionality in GPRS networks.

This approach resulted in a well-tested code base proven fit for the most demanding soft real-
time systems.

But what exactly is OTP?

OTP can be seen as a control system platform for developing, deploying and running Erlang-
based systems. Design principles provide software engineering guidelines that enable systems to
be developed in a uniform way. Consequently, different programs that do completely different
things in the network will have a common structures and functions.

http://www.erlang-solutions.com/

Erlang

Methods & Tools * Summer 2012 * Page 46

When developing Erlang-based systems, it is not mandatory to use some or any parts of OTP
when writing Erlang code. Using it, however, enhances productivity, reduces the overall code
base and increases the code quality. It ensures developers do not reinvent the wheel for common
design patterns and problems that have already been solved, hiding many of the tricky issues
with concurrent and parallel programming.

OTP is made up of three components:

• The Erlang programming language

• A set of libraries, including tools, interfaces and reusable applications

• A set of design principles and patterns describing the system’s architecture

OTP’s design principles provide software engineering guidelines that enable developers to
structure systems in a scalable and fault tolerant way. Different programs that execute
completely different tasks will do so using common design patterns. While it is not mandatory
to follow these design patterns, it is very advantageous to do so.

OTP building blocks

Java’s key components are code threads which are mapped to the OS threads. While the key
component when writing an Erlang program is known as a process, they are independent of OS
threads. As a result, processes take microseconds to create and use little memory. They can be
created and replicated with little overhead, enabling millions to interact concurrently on any
system.

In Erlang, the most frequently used process patterns have been implemented in library modules,
commonly referred to as OTP behaviours. They contain the generic code framework for
concurrency and error handling, simplifying the complexity of concurrent programming and
protecting the developer from many common pitfalls.

Figure 1 - Reusable architectures using OTP applications

Behaviours are monitored by supervisors, themselves a behaviour, and grouped together in
supervision trees. A supervision tree is packaged in an application, creating a building block of
an Erlang program.

Ready-made components are packaged as applications. They include databases, management
protocol stacks, interfaces towards other languages, monitoring tools; components that can be
reused in-between projects.

Erlang

Methods & Tools * Summer 2012 * Page 47

OTP applications that come with the standard Erlang distribution include the Systems
Architecture Support Libraries (SASL), answering common maintenance and operations
requirements including packaging, deploying and system upgrade during runtime.

Mnesia, a distributed, soft real-time database management system written in the Erlang
programming language, enables transactions across hosts is another very popular application,
alongside implementations of protocols and standards such as the simple network management
protocol (SNMP), the Common Object Request Broker Architecture (CORBA) or the Interface
Definition Language (IDL). For telecom systems, protocols such as Megaco H248 protocol
stack are often complemented with proprietary components such as SIP or Diameter stacks.

A complete Erlang system such as the AXD301 switch or the SGSN and GGSN nodes is a set of
loosely coupled applications that interact with each other. Some of these applications have been
written by the developer, some are part of the standard Erlang/OTP distribution, and some may
be other open source components. They are sequentially loaded and started by a boot script
generated from a list of applications and versions. Take care not to confuse OTP applications
with the more general concept of an application, which usually refers to a more complete system
that solves a high-level task.

Erlang OTP’s unique feature set provides an ideal platform for developing distributed
systems.

Implementing similar systems in other languages requires a great deal of effort on features such
as inter-node communication, message queues, failure detectors, and client-server abstractions.

OTP instead provides a battle-tested implementation of these facilities as part of its standard
libraries, making it possible to rapidly prototype systems without significant overhead spent on
the fundamental, generic building blocks.

OTP is more than a telecoms platform

In December 1998, a few years after the first internal release of OTP, the source code and
libraries were released as open source, enabling Erlang to make headway outside of telecoms.
New areas of use included banking, financial switches, web services, control systems or
messaging frameworks such as instant Messaging and SMS, as they all have very similar
characteristics to Telecom applications.

With embedded hardware becoming more powerful, Erlang/OTP is making headways in the
embedded space, alongside cloud computing, noSQL databases and multiuser online gaming.
These are all systems that have the same reliability and scalability requirements as telecom
applications, and as such, benefitted from the features of OTP. OTP also made headways within
telecoms outside of Ericsson and is used by companies such as T-Mobile, Nokia, Motorola and
AT&T.

Some of the most successful OTP based projects today include EjabberD, an open source XMPP
based instant messaging server with an estimated 40 per cent market share of the Jabber market,
CouchDB and Riak, to popular databases in the NoSQL movement. Other users of OTP in the
cloud computing environment include the Ruby On Rails Hosting companies Engine Yard and
Heroku. Github uses Erlang in its infrastructure, as do Amazon and Cloudant to scale their data
stores. Nokia’s disco project, a map-reduce framework in Erlang provides 90 per cent of
Hadoop’s functionality with 10 per cent of the code.

Erlang

Methods & Tools * Summer 2012 * Page 48

Less is more with OTP

There are many benefits to using OTP:

• Less code to develop as a result of the libraries and other components

• Developers have a common programming style and use a component based terminology

• OTP is a solid and well tested code base, so bugs are rare

All of this translates to time to market and lower cost of ownership through lower development
and maintainability costs.

The productivity boosts when using OTP are visible in a study done by Ericsson where they
estimated that using Erlang/OTP resulted in a four to ten-fold reduction in code compared to
using Java or C++. The bug density and line of code productivity, however, remained the same,
making them conclude that using Erlang together with OTP gave them a four to ten-fold
increase in productivity and quality. These numbers were confirmed in another study at Heriot-
Watt University, where rewriting C++ production code resulted in four to twenty fold code
reduction . When examining what the individual lines of code, it was obvious that supervisors
played a significant role. The defensive programming in Erlang consisted of one per cent of the
total code base versus an average of 27 per cent for the C++ applications. Memory management
consisted of 11 per cent of the total code base.

While the Erlang programming language is an excellent tool to build massively scalable
distributed systems that will never go down, you need more than just a programming language
to enable successful implementations. The Open Telecom Platform is the Erlang middleware
that provides all of this. Providing interoperability between increasingly fragmented IT systems
is about much more than supplying the glue that holds everything together.

Learn more about Erlang and the Open Telecom Platform on http://www.erlang.org/

http://www.erlang.org/

Concordion

Methods & Tools * Summer 2012 * Page 49

Concordion

Tomo Popovic, tp0x45 [at] gmail.com

Concordion is an open source tool for writing automated acceptance tests in Java development
environment. The main advantages of Concordion are based on its clean concept and simplicity.
It is very easy to install, learn, and use.

Web site: http://www.concordion.org
Version Tested: Concordion 1.4.2
License & Pricing: Free, under Apache License, Version 2.0
Support: website and users group on yahoo: http://tech.groups.yahoo.com/group/concordion/

Introduction

Concordion is a very powerful tool for writing and managing automated acceptance tests in Java
projects. Concordion directly integrates with JUnit, which allows for easy use with IDE of your
choice (Netbeans, Eclipse, IntelliJ IDEA). One of the most appealing features is that
Concordion uses acceptance tests specifications in native language, which allows use of
Concordion for requirements management.

Installation

Installation of Concordion is very simple. You basically need to download and insert
Concordion JAR file (comes with three dependency libraries provided). In NetBeans all the
JARs go into the section for Test Libraries as shown in Figure 1.

Figure 1. Simple installation: inserting Concordion JAR files into the project

Alternatively, if you are using Maven, Concordion can be referenced in the POM file:

<dependency>
<groupId>org.concordion</groupId>
<artifactId>concordion</artifactId>
<version>1.4.2</version>

</dependency>

Figure 2. Referencing Concordion using Maven

Using Concordion

Using Concordion assumes that developers understand and entertain the idea of active software
specifications. Each feature or behavior needs to be specified, implemented, and verified by the
means of active specifications and their connection to the system under development.

http://www.concordion.org/
http://tech.groups.yahoo.com/group/concordion/

Concordion

Methods & Tools * Summer 2012 * Page 50

An active specification in Concordion consists of two key parts:

1. A nicely written requirement document describing desired functionality (XHTML). The
XHTML specifications contain descriptions of the functionality illustrated with acceptance
test examples. The examples data is marked using simple HTML tags.

2. Acceptance tests are written in Java and called fixture code. Tests are coded implementing a
Concordion extension of a standard JUnit test case. Fixture code finds example data by
marked by tags and use them to verify the system under development.

Figure 3. Concept of active specifications

The concept of using Concordion is illustrated in Figure 3. Acceptance tests are specified using
native language and organized in Requirements (XHTML) files. Tests are implemented in Java
and they connect examples from requirements with Java code of the system being tested. Test
code is connected with the requirements through XHTML tags, which contain Concordion
commands. This will be illustrated later in the article. Running tests in Concordion results in
output XHTML files that combine the original specification and test results. Successful tests are
highlighted “green” and unsuccessful with “red”.

This concept in Concordion is called active specifications due to a fact that test implementation
links specifications and the system. Any change in the system will result in failed tests, which
will remind us that we have to update the specification. Therefore, specifications never get old.

In order for Concordion to work, your project file structure needs to follow certain rules. In the
example shown in Figure 4, we organize specifications, and tests implementation files into a
package structure, here named exampleapp.spec.

Concordion

Methods & Tools * Summer 2012 * Page 51

Figure 4. Organizing active specifications within Java project

As we can see in the example, other specifications and tests can be organized in sub-folders,
which helps navigation. The folders structure also allows for easier navigation through the
output files, which is implemented using “breadcrumbs”.

Simple example

To write specifications in Concordion, we use fairly simple XHTML syntax. In each
specification document we need to use the “concordion” namespace at the top of the XHTML
file. Please refer to the top of the example in Figure 5.

<html xmlns:concordion="http://www.concordion.org/2007/concordion">

 <head>

 <title>Config</title>

 </head>

 <body>

 <h1>REQ-003 Config</h1>

 <p>

 Provides feature for adding two integers. For example

 2 plus

 5 should give

 7.

 </p>

 </body>

</html>

Figure 5. A simple example of active specifications: Config.html file

Further in the example, we use simple XHTML tags to mark specific parts of the example and
connect them to our test implementation code, which is in Concordion also called fixture code.
Variables #a and #b are set to 2 and 5 inside of the sentence “For example 2 plus 5 should give
7” using concordion:set command. Another tag is specifying concordion:assertEquals
command, which as a parameter in this case invokes internal method implemented in the
corresponding test class. For more information on Concordion tags and commands please refer
to Concordion website, which provides an excellent tutorial. Java fixture code for this active

Concordion

Methods & Tools * Summer 2012 * Page 52

specification is given in Figure 6.

package exampleapp.spec.config;

import exampleapp.Configuration; // connects to the System Being Tested

import org.concordion.integration.junit3.ConcordionTestCase;

public class ConfigTest extends ConcordionTestCase {

 public int getTestResult(int a, int b) {

 Configuration conf = new Configuration();

 return conf.addTwoIntegers(a,b);

 }

}

Figure 6. Test implementation (fixture code): ConfigTest.java

The implementation class uses name same as the XHTML specification, but with suffix Test, in
this case Config.html and ConfigTest.java. The test connects the actual system being tested
with the XHTML active specification. An instance of Configuration class is created, and then its
method that adds two numbers is called. The result is passed back to the active specification.
Upon executing the tests, the Concordion generates an output XHTML file, with inserted red or
green highlights around the test results.

Figure 7. Test results: number 7 highlighted “green”

Providing tests in tables

Sometimes we need to run several test cases in order verify the desired behavior. In automated
acceptance test tools this is typically done via tables. Concordion is not an exception. We can
specify a test data set using standard XHTML tables and then use Concordion command set
applied to table headers, in form of tags, to mark the table data for use in testing. Concordion
will grab the test data from each row in the table, run the acceptance test and compare the results
against the expected output. This feature is very useful when there is a need to run several
testing data sets.

Concordion

Methods & Tools * Summer 2012 * Page 53

<html xmlns:concordion="http://www.concordion.org/2007/concordion">

 <head>

 <title>System Login</title>

 </head>

 <body>

 <h1>REQ-001 System Login</h1>

 <p>

 The system shall provide system logon function that will be used when

 a user attempts to use the system. The user needs to provide credentials

 in a form of username and password pair.

 </p>

 <div class="example">

 <h3>Examples</h3>

 <p>

 For the purpose of demonstration the system under test contains a

 system login function with username and password hardcoded to

 "johndoe" and "123abc!@#" respectively. All other combinations

 should fail.

 </p>

 <table concordion:execute="#valid=systemLogin(#username, #password)">

 <tr>

 <th concordion:set="#username">Username</th>

 <th concordion:set="#password">Password</th>

 <th concordion:assertEquals="#valid">Sucess</th>

 </tr>

 <tr>

 <td>john</td>

 <td>doe123abc!@#</td>

 <td>no</td>

 </tr>

 <tr>

 <td>admin</td>

 <td>admin</td>

 <td>no</td>

 </tr>

 <tr>

 <td>johndoe</td>

 <td>123abc!@#</td>

 <td>yes</td>

 </tr>

 </table>

 </div>

 <h2>Further Details</h2>

 How to create user and password?

 Username restrictions and validation?

 Password restrictions and validation?

 Can email be used instead of username?

 </body>

</html>

Figure 8. An example of test data in a form of table – PasswordValidation.html

Concordion

Methods & Tools * Summer 2012 * Page 54

package exampleapp.spec.login;

import org.concordion.integration.junit3.ConcordionTestCase;

import exampleapp.Login; // system under design

public class PasswordValidationTest extends ConcordionTestCase {

 public boolean isValid(String password) {

 Login login = new Login();

 return login.validatePassword(password);

 }

}

Figure 9. Test implementation (fixture code) - PasswordValidationTest.java

Figure 10. Tabular test output: successful runs highlighted “green”

An additional benefit of using XHTML files for specifications is that we can use hyperlinks
between the specifications. In the example above, this is illustrated with “Further Details”
section that links to Password restrictions and validation.

Concordion

Methods & Tools * Summer 2012 * Page 55

Suite of Tests

It is very wise to organize and structure our specifications and tests nicely. In Concordion, this
comes very naturally for Java developers to organize specifications and tests into packages. In
addition, Concordion offers a very nice way of grouping related tests into groups or subgroups
and, therefore, create test suites. As shown in the example in Figure 11, a test suite can be
created by simply referencing other XHTML test specifications.

<html xmlns:concordion="http://www.concordion.org/2007/concordion">

 <head>

<title>Example App</title>

 </head>

 <body>

 <h1>Example App</h1>

 <p>

 <a concordion:run ="concordion" href="login/Login.html">

 REQ-001 System Login

 </p>

 <p>

 REQ-002 Browse System Events

 </p>

 <p>

 <a concordion:run ="concordion" href="config/Config.html">

 REQ-003 Update System Settings

 </p>

 </body>

</html>

Figure 11. Suite of tests generated by referencing XHTML files (Spec.html)

package exampleapp.spec;

import org.concordion.integration.junit4.ConcordionRunner;

import org.junit.runner.RunWith;

@RunWith(ConcordionRunner.class)

public class SpecTest {

}

Figure 12. Empty class that implies running of tests in suite (SpecTest.java)

An empty class shown in Figure 12 implies running of tests in the suite. Please note that tests in
the suite need to be organized in proper sub-packages as shown previously in Figure 4. This
organization of files also produces nice “breadcrumb” navigation links at the top of the output
pages (please refer to the top of the page in Figure 10 above). Hyperlinks in the result file will
be highlighted red or green depending on the outcome of the test run (Figure 13).

Extensions

Concordion extensions allow for adding new functionalities. Extensions enable users to add
their own commands, listen to events, and modify the Concordion output. The extensions are
installed from separate JAR. The installation and use of extensions is beyond the scope of this
article, but it is important to mention them. Please refer to Concordion website for more
information.

Concordion

Methods & Tools * Summer 2012 * Page 56

Figure 13. Test suite: highlighted hyperlinks indicate success/fail of tests

Conclusions

Concordion is a very interesting open source tool for automating acceptance testing in your Java
projects. It is very easy to install and it has fairly fast learning curve. It can easily be used with
various IDEs. If used properly and pragmatically, it can be a very good tool for managing the
requirements specifications as well. Since the specifications are linked with the system, any
change in the system or specifications will result in failed tests, which will prompt us to keep
the specifications up-to-date and in sync with the system. Therefore, our specifications never go
stale.

Concordion was originally developed for Java, but now there are also versions for .NET,
Python, Scala, and Ruby. Please check the Concordion website for latest development.

Further reading

• Concordion website: http://www.concordion.org

• Users group: http://tech.groups.yahoo.com/group/concordion/

• Lisa Crispin, Janet Gregory, “Agile Testing: A Practical Guide for Testers and Agile
Teams”, Addison-Wesley, 2009

http://www.concordion.org/
http://tech.groups.yahoo.com/group/concordion/

Mockito

Methods & Tools * Summer 2012 * Page 57

Mockito

Tomek Kaczanowski, kaczanowski.tomek [at] gmail.com
http://practicalunittesting.com

Mockito is a popular open source Java mocking framework. It is very powerful and easy to use.
It gives a lot of power into the hands of developers, but at the same time does not corrupt their
hearts! Instead it urges them to write clean, well-designed and loosely-coupled code.

Web Site: http://mockito.org
Version Tested: Mockito 1.9.0 on Linux with Java 1.6.0_26
License & Pricing: Open Source (MIT License, http://www.opensource.org/licenses/mit-
license.php)
Support: User mailing list http://groups.google.com/group/mockito

Using Mockito

Mockito is distributed as a single JAR file, which must be available in the classpath in order to
execute tests. Usually this is provided by a properly configured build tool like Ant or Maven.

Why Test Doubles?

When writing tests it is often required to control the environment in which tested object (a so-
called system under test (SUT), which can be a single class, a module or an application) is
running. It is especially important to isolate the tested class in unit tests to make sure that it
works as expected in every circumstances. It is often also required to verify if the tested object
interacts with its collaborators in a particular way. Mock objects (or to be more precise - test
doubles) allow to achieve both goals.

Consider a simple class - named WeatherForecast - which fetches weather forecasts from
some external sources (e.g. web services). Now imagine writing tests for this class. It would be
quite hard to test all its logic if we had to use the real collaborators (real web services). How can
we make a real web service that will provide all the needed answers to test all possible paths of
execution and thus test every bit of the WeatherForecast implementation? How can we verify
how WeatherForecast class behaves when its collaborators behave unexpectedly - e.g. by
breaking connections, responding with nonsense data or throwing exceptions? Making real web
services behave in such awkward way might be really hard, if it is possible at all! Mock objects
(or to be more precise stubs) allow us to test such classes, which rely on “external”
collaborators.

The usefulness of mock objects is not limited to handling of such “external” collaborators.
Following the Test-Driven Development (TDD) approach, we often write classes which use
collaborators (in form of interfaces) that are not yet implemented. This is also a perfect place for
using test doubles (mocks and/or stubs) to test this emerging design.

NOTE: Please note, that even testing with test doubles is usually not enough to prove your
application is working correctly! Make sure you have also some end-to-end tests which test “the
real thing”!

http://practicalunittesting.com/
http://mockito.org/
http://www.opensource.org/licenses/mit-license.php
http://www.opensource.org/licenses/mit-license.php
http://groups.google.com/group/mockito

Mockito

Methods & Tools * Summer 2012 * Page 58

Mockito's Features

This short introductory article will describe what values Mockito can bring to your testing
activities. I will concern less with the syntax which is described in details on Mockito’s
homepage and numerous websites.

Apart from “typical” tasks of a mocking framework (i.e. creation of test doubles, stubbing,
setting expectations and verification of behavior), Mockito has some features which distinguish
it from other mocking frameworks:

• Mockito allows to write test methods compatible with “arrange/act/assert” approach. This is
different from what other mocking frameworks require, and feels much more “natural”.

• Mockito can be used to write Behavior Driven Development (BDD)-style tests with some
syntactic sugar that facilitates it.

• Mockito provides a nice, easily readable syntax. It also provides some annotations useful for
reducing boilerplate code.

• It is easy to read Mockito's error messages. They also point out to possible mistakes a
developer can make, which is very handy for people who begin to work with Mockito.

A lot of attention is given to the maintainability of tests. This is easier to achieve with Mockito
than with other frameworks, by its following properties:

• Mockito is “forgiving” by defaults as it verifies only the interactions that it was asked to
verify. This allows to write very focused tests that are not fragile. Mockito also makes stubs
return some canned values by default like. zeros, empty strings and falseys.

• Mockito allows writing of relaxed tests. Developers can specify what is really important for
the given test scenario, and abstract over the unimportant details, using constructs like
anyString() instead of specific values for instance.

It is worth mentioning that Mockito allows also for verification of quite sophisticated scenarios.
For example, it can be used to:

• verify the number of method calls (using its times() method),

• verify the order of calls to particular collaborators (e.g. first, method a() was called on
collaborator A, then method b() was called on collaborator B),

• inspect the arguments of methods created within the tested methods (using
ArgumentCaptor class),

• apply “partial mocking” technique.

Some of the above should be use with extreme caution as they can hurt tests readability and/or
maintainability! Mockito's documentation explains this in detail.

An Example

As an example of Mockito let us consider the following, simple class:
public class WeatherForecast {
 private WeatherService globalWeather; [1]
 private WeatherService localService; [1]

 public WeatherForecast(WeatherService globalWeather, WeatherService
localService) {

Mockito

Methods & Tools * Summer 2012 * Page 59

 this.localService = localService;
 this.globalWeather = globalWeather;
 }

 public Weather getForecast(String city) { [2]
 if (localService.hasForecastFor(city)) {
 return localService.getWeather(city);
 }
 return globalWeather.getWeather(city);
 }
}

This simple class has two collaborators that are both of the WeatherService type [1]. When
asked for a weather forecast [2], it first queries the local forecast service, and only if it can not
provide a forecast, refers to the global weather service. This logic is quite typical for the citizens
of object-oriented systems, in which each class has a very limited responsibility and often relies
on others to perform its duties.

Now let us see a test code, which verifies one of the possible execution paths of the
WeatherForecast class.

@Test
public void
shouldFetchWeatherForecastFromGlobalServiceIfNotAvailableLocally() {
 // creation of collaborators [1]
 WeatherService localWeatherService =
Mockito.mock(WeatherService.class);
 WeatherService globalWeatherService =
Mockito.mock(WeatherService.class);

 // creation of SUT [2]
 // and injection of collaborators
 WeatherForecast forecast = new WeatherForecast(globalWeatherService,
localWeatherService);

 // stubbing of collaborators
 // telling them what should they do when asked [3]
 Mockito.when(localWeatherService.hasForecastFor(anyString()))

.thenReturn(false);
 Weather forecastedWeather = new Weather();
 Mockito.when(globalWeatherService.getWeather(anyString()))

.thenReturn(forecastedWeather);

// invocation of the SUT method [4]
 Weather weather = forecast.getForecast("myCity");

 assertThat(weather).isNotNull(); [5]
 assertThat(weather).isSameAs(forecastedWeather);
}

This test presents all the typical phases of Mockito test. First the collaborators are created [1].
Mockito’s mock() method is used (in reality I would rather import it statically so the Mockito.
part could be omitted). It results with the creation of an imposter who looks like a real object of
the WeatherService type, but can be strictly controlled. This is exactly why we use Mockito
to create it.

Mockito

Methods & Tools * Summer 2012 * Page 60

[2] Then the object we attempt to test - of the WeatherForecast type - is created. Its
collaborators are injected via its constructor.

Now, to test a specific scenario we need to instruct the collaborators on what they should do. Let
us test that if the local weather service is unable to provide a forecast, then a global service is
used. In order to do this, we need to inform both weather services about their expected behavior
[3].

After every object knows its role, we can call the actual method of the SUT [4] and verify that it
behaves properly [5].

Now comes the verification part. In this case, it is enough to verify that the returned Weather
object is the same as the one which the global service should provide.

As we can see the expectations part [3] are really readable. For example one can read the
following line:
Mockito.when(localWeatherService.hasForecastFor(anyString())).thenReturn(
false);
like this:
”When someone asks you, localWeatherService if you can provide weather forecast for any
city, you will answer with no.”

Please note that this test is very careful not to verify too much. The main reason for this is not to
bind the test too strongly to the current implementation of the WeatherForecast class. If
required, we could use one of the methods provided by Mockito to strictly control what
interactions happened during the execution of SUT methods. We could for example write the
following additional assertions:

• Mockito.verify(globalWeatherService).getWeather("myCity"); - to verify that
the getWeather() method was actually called on globalWeatherService collaborator.

• Mockito.verifyNoMoreInteractions(localWeatherService) - to make sure that
apart from calling the hasForecastFor() of the localWeatherService collaborator, its
no other methods were called.

Such verifications are often required but should be used with caution. As a rule of thumb,
whenever possible we should use state testing and not interactions testing that verifies the
methods called on collaborators. This means that we should assert on the returned values or
changed states of objects.

Limitations

Even if Mockito is very powerful, useful and easy-to-use, it still has some limitations. They
result from the conscious decision of its designers who created a tool aimed at working with
well-designed code. Mockito shines when used against well encapsulated, loosely-coupled code.
However, if you work with a dreadful spaghetti code filled with tight-coupled classes, Mockito
will not provide means sufficient to deal with it. There is no support for mocking of static or
final classes. Some will say this is a weakness of Mockito, while others will claim that this is an
important feature of this tool, which makes developer write better code or redesign/refactor
existing one.

Mockito

Methods & Tools * Summer 2012 * Page 61

Conclusion

If you look at the frameworks’ popularity, you will notice that Mockito is very popular in Java
world (if not a number one!), and still gaining popularity. It is has already proved its usefulness
and robustness in thousands of open-source and commercial projects. It is frequently released,
and is still being improved. It can be used with other popular tools like JUnit, TestNG,
Cobertura, Hamcrest or FEST Fluent Assertions. Last, but not least, it has a very friendly
community with an active mailing list, and impressive documentation.

I would like to end this article with a quote from Mockito's website, which very well describes
this superb tool: “Mockito is a mocking framework that tastes really good. It lets you write
beautiful tests with clean & simple API. Mockito doesn't give you hangover because the tests
are very readable and they produce clean verification errors.“

Further Readings

• Mockito documentation
http://docs.mockito.googlecode.com/hg/latest/org/mockito/Mockito.html

• Mockito mailing list http://groups.google.com/group/mockito

• Practical Unit Testing with TestNG and Mockito, book by Tomek Kaczanowski,
http://practicalunittesting.com

• Szczepan Faber’s blog http://monkeyisland.pl/

http://docs.mockito.googlecode.com/hg/latest/org/mockito/Mockito.html
http://groups.google.com/group/mockito
http://practicalunittesting.com/
http://monkeyisland.pl/

Robotium

Methods & Tools * Summer 2012 * Page 62

Robotium

Renas Reda

Robotium is a test framework created to make it easy to write powerful and robust automatic UI
test cases for Android applications. With the support of Robotium, test case developers can
write function, system and acceptance test scenarios, spanning multiple Android activities.
Robotium tests can be run on both emulator and device.

Web Site: http://Robotium.org
Version tested: 3.2.1
System requirements: Android SDK
License & Pricing: Free, Apache 2
Support: Issue tracker at http://code.google.com/p/robotium/issues/list,
Mailing list at https://groups.google.com/forum/?fromgroups#!forum/robotium-developers

Benefits of Robotium

• Easy to write

• Shorter code

• Automatic timing and delays

• Automatically follows current Activity

• Automatically finds Views

• Automatically makes own decisions, e.g. when to scrolls

• Test execution is fast

Installation

Robotium is downloaded as a single JAR file, which can be placed in any folder. To actually
start using Robotium, the JAR must only be put in the classpath of the test project.

Robotium can be used with all the different build automation tools. Perform the below steps to
use Robotium with Maven:
1. Set up your project(s) as usual for Maven, see maven-android-plugin.
2. Add a dependency to Robotium in your test project:
 <dependencies>
<dependency>
<groupId>com.jayway.android.robotium</groupId>
<artifactId>robotium-solo</artifactId>
<version>3.2.1</version>
</dependency>
...
</dependencies>

NB: For the version number, enter the version number of the latest release!

http://robotium.org/
http://code.google.com/p/robotium/issues/list
https://groups.google.com/forum/?fromgroups#!forum/robotium-developers
http://code.google.com/p/maven-android-plugin/

Robotium

Methods & Tools * Summer 2012 * Page 63

Usage

Robotium can be used both for testing applications where the source code is available and
applications where only the apk is available (implementation details not known). For more
information, instructions, and step by step tutorials see the Robotium website.

To use Robotium, create an Android tests project and add a test class. Usually the
ActivitityInstrumentationTestCase2 test class is used to write Robotium test cases. However,
Robotium is compatible with all the Android test classes. When writing Robotium test cases
only one class is used: Solo.

The below example illustrates how a Robotium test case might look like when used in
conjunction with ActivityInstrumentationTestcase2:

public class EditorTest extends ActivityInstrumentationTestCase2<EditorActivity> {
private Solo solo;
 public EditorTest() {
super("com.test.editor", EditorActivity.class);
}
 public void setUp() throws Exception {
solo = new Solo(getInstrumentation(), getActivity());
}

 public void testPreferenceIsSaved() throws Exception {

solo.sendKey(Solo.MENU);
solo.clickOnText("More");
solo.clickOnText("Preferences");
solo.clickOnText("Edit File Extensions");
Assert.assertTrue(solo.searchText("rtf"));

solo.clickOnText("txt");
solo.clearEditText(2);
solo.enterText(2, "robotium");
solo.clickOnButton("Save");
solo.goBack();
solo.clickOnText("Edit File Extensions");
Assert.assertTrue(solo.searchText("application/robotium"));
}

@Override
public void tearDown() throws Exception {

solo.finishOpenedActivities();
}
}

Robotium

Methods & Tools * Summer 2012 * Page 64

Some Robotium commands

• getCurrentActivity()

• clickOnButton(String regex)

• clickInList(int line)

• enterText(int index, String text)

• searchText(String regex)

• waitForText(), waitForActivity(), waitForView()

• clickOnMenuItem(String text)

• goBack(), goBackToActivity(String name)

More information

More information on how to use Robotium can be found on the website. An example test project
as well as various step by step tutorials with images can be downloaded from Robotium.org.

Gettings started: http://code.google.com/p/robotium/wiki/Getting_Started

Tutorials: http://code.google.com/p/robotium/wiki/RobotiumTutorials

http://code.google.com/p/robotium/wiki/Getting_Started
http://code.google.com/p/robotium/wiki/RobotiumTutorials

JMeter Plugins

Methods & Tools * Summer 2012 * Page 65

JMeter-Plugins - More Obvious and Powerful Load Testing

Andrey Pohilko, JP@GC, http://code.google.com/p/jmeter-plugins/

JMeter Plugins at Google Code (JP@GC) is a popular third-party plugins set for JMeter,
extending its functionality with a dozen of graphs, new load delivery controllers and other
functions that are missing from the original JMeter package. Basically, the JP@GC set contains
two types of plugins: graph plugins and JMeter functionality extensions.

Web site: http://code.google.com/p/jmeter-plugins/
Version Tested: JMeter-Plugins 0.5.2 as of May 14, 2012
License & Pricing: Free & Open Source
Support: Users Mailing List http://groups.google.com/forum/#!forum/jmeter-plugins
Documentation: Online http://code.google.com/p/jmeter-plugins/

Installation

To add extensions to JMeter, you should simply locate the lib/ext folder under JMeter
installation path and extract the JP@GC distribution package contents into it. The latest JP@GC
package can be always found at the project page http://code.google.com/p/jmeter-plugins/

Restart JMeter to load the installed plugins and look for items named like «jp@gc - ...» in
JMeter menus. Use those items as if they are regular JMeter elements.

Documentation

Every JP@GC plugin has an immediate «Help on this plugin» link, opening Wiki page
containing description for current extension in Web browser. If you still confused or have some
tricky issue — feel free to ask at project support mailing list.

Graph Plugins

The JMeter tool itself has a sound position in the world of performance testing, because it offers
professional level features, comparable to commercial tools, and still stays free and open source.
However, out-of-the-box JMeter has some weak points, mainly a lack of reporting features and
visualizations.

JP@GC targets this weak point and offers several groups of test results visualization plugins.
All of these plugins can be found in Edit => Add => Listener menu of JMeter. Every graph
plugin in JP@GC has three tabs: Chart, Rows and Settings. Don't forget to play with controls at
Settings tab — there are a lot of look-and-feel settings to get the best view of your data. Also
consider right-clicking the graph area, there is popup menu for saving image or CSV data under
it.

Target Resource Monitoring

PerfMon Metrics Collector is the most popular component of the jmeter-plugins set. It allows to
monitor the resources usage of the target computer within JMeter. It requires a special
ServerAgent process to be started at target computer and plots collected data on nice graph
(Figure 1).

http://code.google.com/p/jmeter-plugins/
http://code.google.com/p/jmeter-plugins/
https://groups.google.com/forum/#!forum/jmeter-plugins
http://code.google.com/p/jmeter-plugins/
http://code.google.com/p/jmeter-plugins/

JMeter Plugins

Methods & Tools * Summer 2012 * Page 66

Figure 1 - Target Resource Monitoring Plugin

PerfMon plugin supports collecting an unlimited number of metrics at the same time. It can
collect over 75 separate metric types in groups: CPU, Memory, Disk, Network, Swap, TCP
statistics, Java JMX metrics. Per-process and system total metrics are supported. In case you
need to collect a custom metric that is calculated by your program/script, you may use the
Custom metric type.

Timelines

The most numerous graphs in JP@GC are timelines which have all names like «... Over Time»
or «... per Second». Timeline graphs visualize the results during the test run, and also can load
non-GUI JMeter test results from JTL files. The available timeline data types to plot are:
response times, server hits (transactions) per second, response codes, active JMeter thread
counts.

Composite Graph is a special plugin that does not collect data itself, but uses other timelines as
a source. You can aggregate different data in one graph to track correlation between test
parameters and examine how response time depends on active threads count for instance. Since
PerfMon Metrics Collector has also a timeline type, it can be used as a source for Composite
Graph, too.

JMeter Plugins

Methods & Tools * Summer 2012 * Page 67

Figure 2 - Composite Graph with three different graphs chosen

Distributions

Distribution analysis is vital in performance testing, so JP@GC has a pair of graph plugins for
distribution analysis: Response Times Distribution and Response Times Percentiles.

Distribution bar chart is a commonly used analysis technique and JP@GC provides flexible
graph with configurable granulation (Figure 3). There is special «Aggregate Mode» switch at
settings tab. If the aggregate mode is selected, all data rows are merged into single row, showing
whole test response times distribution.

JMeter Plugins

Methods & Tools * Summer 2012 * Page 68

Figure 3 - Response Times Distribution visualized

The Percentiles graph is used for advanced results analysis., It allows analyzing not only 50%
or 90% line, but all other percentile levels that can be set in external SLA requirements.

Command-Line Tool

Advanced JMeter users rarely perform regular JMeter tests via GUI, they prefer to set up tests
and run tem in non-GUI mode, via command-line. To help users automate their test reporting,
JP@GC has a command-line tool that can consume JTL files and produce the same graphs as
JMeter GUI plugins. Also it can be used to export graph data to CSV file for further processing.
For example, the following command:
JMeterPluginsCMD.bat --generate-png test.png --input-jtl results.jtl --
plugin-type ResponseTimesOverTime
will generate the same graph as if results.jtl file would be loaded in Response Times Over Time
plugin from JMeter GUI.

Feature Extension Plugins

Visualization is not the only area where JMeter functionality can be efficiently extended. There
are also useful additions for load supply, logging, advanced inter-thread parameter passing and
many others. Only the key feature extensions will be described in this article, all others are
available in project's documentation.

Load Delivery Plugins

The original JMeter package contains only one load supply controller: simple Thread Group.
However, many users need solution to configure threads to start by bunches, or to create
complex load supply scenario. JP@GC provides two solutions: Stepping Thread Group and
Ultimate Thread Group. For those users who use not thread-driven, but request-per-second-
driven load testing, there Throughput Shaping Timer plugin.

JMeter Plugins

Methods & Tools * Summer 2012 * Page 69

Stepping Thread Group (STG) allows to set up users activation scenario where threads start
with «stepping» schedule. Aiming to be more obvious than original JMeter elements, the
preview graph in STG shows expected active threads count (Figure 4).

Figure 4 - Stepping Thread Group

Ultimate Thread Group (UTG) also offers threads schedule with preview. It is composed from
ramp-up chunks and allows to compose complex cases, like sudden spikes. Every threads chunk
has settings for startup delay, ramp-up time, hold time and ramp-down time. The final load will
be calculated as a sum of the active threads count of all chunks in a given second.

Throughput Shaping Timer concentrates on request throughput and allows setting freeform
schedule like UTG. It is used when your service is placed behind a load balancer and users
count is masked.

Samplers

The original JMeter is perfect at testing HTTP tasks and other high-level TCP services. But it
has no UDP protocol support. JP@GC offers UDP Sampler, which may be used for load testing
widely used DNS servers.

Dummy Sampler is also interesting: it just produces samples without external requests, this helps
to debug Regular Expression Extractor work.

JMeter Plugins

Methods & Tools * Summer 2012 * Page 70

HTTP Raw Request offers low-level TCP sampler with important improvement: memory
consumption limits. It may be used for huge file uploads and huge response downloads when the
original JMeter items produce OutOfMemoryException or work slowly.

Logging

As said above, experienced JMeter users like to run their tests from command-line using the
non-GUI mode. The drawback is that JMeter shows no activity info in command line and it is
difficult to tell if it is OK. Again, JP@GC helps with Console Status Logger, which prints short
summary every second in non-GUI mode. Find it in the "Listeners" menu of JMeter.

A frequent question in JMeter Mailing List is how to save some value extracted during test to
some custom log file. There is Flexible File Writer which can be used to setup freeform saving
into file.

Inter-Thread Communication Features

Finally, the most advanced JMeter users will be surprised how easily they can perform the most
complex task for JMeter scenario: pass some value from one Thread Group to another. The
version 0.5.2 of JP@GC introduces Post-Processor that puts data into global queue and Pre-
Processor that gets data from that queue, no matter in which thread it will be called.

Figure 5 - Inter-Thread Communication via FIFO Queue

Conclusion

The original JMeter is a precious tool for the load testing community. And it can glitter even
more when polished with JP@GC additions. Not all of them were covered in this short article,
so take your time to investigate project documentation.

Remember, that you are in the area of free and open source software with JMeter and JP@GC.
Your feedback and ideas can easily change the project and fill it with new features.

Classified Advertising

Methods & Tools * Summer 2012 * Page 71

Introducing Practically Free Load Testing up to 1,000,000
Virtual Users

Its election season, and one of our clients got listed on the
Drudge Report: a single page instantly got millions of hits
before the site crashed. We thought it would be cool to provide
an inexpensive load testing service that could test for this
simple scenario so websites could make sure their site wouldn't
be crushed when their page views go through the roof.

Download Load Tester LITE from webperformance.com.

Advertising for a new Web development tool? Looking to recruit
software developers? Promoting a conference or a book?
Organizing software development training? This classified
section is waiting for you at the price of US $ 30 each line.
Reach more than 50'000 web-savvy software developers and project
managers worldwide with a classified advertisement in Methods &
Tools. Without counting the 1000s that download the issue each
month without being registered and the 60'000 visitors/month of
our web sites! To advertise in this section or to place a page
ad simply http://www.methodsandtools.com/advertise.php

METHODS & TOOLS is published by Martinig & Associates, Rue des Marronniers 25,
CH-1800 Vevey, Switzerland Tel. +41 21 922 13 00 Fax +41 21 921 23 53 www.martinig.ch
Editor: Franco Martinig ISSN 1661-402X
Free subscription on : http://www.methodsandtools.com/forms/submt.php
The content of this publication cannot be reproduced without prior written consent of the publisher
Copyright © 2012, Martinig & Associates

http://www.webperformance.com/?utm_campaign=free&utm_medium=newsletter&utm_source=methodandtools
http://www.methodsandtools.com/advertise.php
http://www.methodsandtools.com/forms/submt.php

	Creating an ATDD Ready Sprint Backlog
	Continuous Delivery Using Maven
	DSDM Atern Overview
	Knowledge Management and Software Organizations
	Erlang Open Telecommunications Platform
	Concordion
	Mockito
	Robotium
	JMeter-Plugins - More Obvious and Powerful Load Testing

