
METHODS & TOOLS
Global knowledge source for software development professionals ISSN 1661-402X
Spring 2006 (Volume 14 - number 1) www.methodsandtools.com

Do We Have a Standard or Lack of Innovation?

The globalisation of the economic world is a trend that has certainly been sustained by the
development of technology these recent years. Internet makes the diffusion of knowledge and
ideas easier between the parts of the world that are connected to the web. We have also seen a
decrease in the diversity of available ideas and products. At the end of the last century, the
choice was wider in the computer industry. US companies like Digital, Data General or Wang
were competing in the world of minicomputing. European countries had also their national
computer industry with companies like ICL, Siemens, Bull, Norsk Data or Olivetti, each with its
own operating system. Now the choice of a supplier is reduced and there are limited alternatives
besides Unix/Linux and Windows in the operating systems. The same evolution happened in the
field of software development methods. In the 80s and 90s, the SEI was establishing the basis of
the CMM; independent thinkers like Yourdon, Jackson or Martin were promoting their
approaches; an EuroMethod project was funded by the European Commission to consolidate
national methologies like SSADM or Merise. Then the rise of object orientation provided a new
breed of modelling techniques that included the object paradigm. But in 1994 begin the creation
of the UML by merging the Booch, OMT and OOSE approaches. UML became an OMG
standard at the end of 1997 and since then we have had few diversity on the modelling front

There are many reasons for this. Even if some modelling tools continued to implement non-
UML techniques, there has been a decline of "national" editors that were the champions of their
homeland methods. Some have survived, either due to a large national market or by looking for
other niche markets like process modelling, but they lack the resource and motivation to evolve
and promote their original approach. People have also realised that modelling techniques were
not the silver bullet to solve the problem of delivering applications that meet end users' needs.
Finally the UML/OMG standardisation process allows to involve different participants. Many
modelling researchers should have thought: "if you can't beat them, join them". Even if a
standard like UML improved the overall level and the acceptance of modelling techniques, it is
damaging that a collateral effect could be to limit the amount of new thinking.

Inside
Use Cases and Implementing Application Lifecycle Management Systems page 3

Adopting an Agile Method ... page 14

The Cornerstone of a Great Shop.. page 20

www.methodsandtools.com

Methods & Tools

Methods & Tools * Spring 2006 * Page 2

Advertisement – Hosted Web-Based Issue and Defect Tracking - Click on ad to reach advertiser web site

http://www.adminitrack.com?affid=1056

Application Lifecycle Management

Methods & Tools * Spring 2006 * Page 3

Use Cases and Implementing
Application Lifecycle Management Systems

Paul Bowden
MKS Systems, http://www.mks.com

Abstract

The UML technique of Use Cases provides a powerful tool to elicit and document stakeholder
requirements. While usually used in a traditional development context, use cases can be
deployed with good effect when implementing an enterprise scale Application Lifecycle
Management (ALM) system.

Application Lifecycle Management encompasses the processes and tools employed at all stages
of development: from project inception and requirements gathering to deployment and
maintenance. With this much broader scope we must take care when planning and deploying
several complex interacting systems. This article describes how use cases can help us plan and
implement ALM processes and tools.

Introduction

Implementing an enterprise application lifecycle management system is very different from
giving your developers a new version control system to put their source code in. Enterprise
ALM affects processes that control the whole software development lifecycle and very likely
other areas of the business. For instance an application that supports the financial management
of the business will most likely be subject to corporate governance regulations and our systems
must be able to demonstrate compliance. Enterprise ALM is always driven by the goal of
delivering value to the business and alignment with business strategy, so we should be clear
about our scope, the business stakeholders we are going to impact and how we can measure our
success.

As with all activities, planning is key. What tools and techniques can we apply to reduce risk
and ensure a timely implementation that delivers value? This paper will focus on an important
technique in UML, use cases, which can help when eliciting requirements, documenting and
planning the implementation and validating we have the systems we need.

Use Cases in an ALM context

A use case is a sequence of actions a person takes to achieve a specific goal. In more detail we
can say:

We identify a set of activities, performed in a certain order

We know who performs the actions. The “doer” is usually referred to as an actor. This
acknowledges the fact that we may be interested in a class of people, a particular role or indeed
another system.

• There is a defined result to the actions: a goal.

• The use case has a descriptive name.

• The use case is usually summarised in a diagram linking the actors to the use cases they
perform.

http://www.mks.com/

Application Lifecycle Management

Methods & Tools * Spring 2006 * Page 4

Use cases being descriptive text within a more or less formal framework, we can develop,
discuss and manage them with any of our stakeholders.

By way of a very simple example, thinking in terms of ALM, we can quickly come up with:
Check out file. Our actor will be something like Developer, and we can describe the use case
thus.

Check out file

Actor: Developer

The developer selects one or more files from the repository and selects Check-out.

The files are marked as locked by the developer and are write-enabled in the personal
workspace.

The second paragraph in our use case identifies the “post-conditions”, that is, the state of the
system after the use case has been completed. Where important, we can also specify pre-
conditions for the use case. Pre-conditions specify things that must be true before the actor can
execute the use case; for example they have logged on.

Advertisement – TopTeam Analyst - Click on ad to reach advertiser web site

http://www.technosolutions.com/mtoffer05.html

Application Lifecycle Management

Methods & Tools * Spring 2006 * Page 5

The use case can also explore alternate sequences of action or “paths”. The non-exceptional path
through the use case is sometimes called the happy path. It will often be instructive to explore
alternate paths through the use case. The Check Out use case above provides a good illustration.
What happens if the actor tries to check out the file and another developer already has it locked?

Alternate path

Another user has a lock on the revision that the actor is trying to checkout. The actor branches
the file and locks the branched revision. The actor must later merge their changes into the
modified file.

This use case expresses an important policy we will implement: developers won’t wait for the
lock to be released or make changes locally; they will branch around the lock. Of course, we
could choose another policy but the path through the use case has forced us to make the decision
explicit.

The use cases are usually illustrated with a simple diagram showing the actors and the use cases
they execute.

Developer

«» «»

Check-out file

«» «»

Create
maintenance

branch

The diagram complements the detailed text of the use cases by giving a visual representation of
the use cases we are considering. This can be useful in workshops where we want to focus
discussion on a particular area of the implementation. For instance, how and when we will
branch the codebase to support post-release maintenance.

Templates

There are many templates for use cases available as part of methodologies or from various web
sites documenting best practice or as part of paid-for consulting. The precise form use cases take
is a hotly debated topic and the best advice offered seems to be to do what works for you.
However, since we are likely involving a broad range of stakeholders our guiding principles
should be clarity to a wide non-technical audience.

Use cases and requirements

Use cases capture functional requirements but situations may a rise where the development of
requirements is separate from that of the use cases. For instance requirements may be prepared
in advance by the (internal or external) customer. In this case the requirements map to use cases.
This mapping will form a traceability matrix where all requirements are fulfilled by the use
cases allowing us to demonstrate that we have satisfied the requirements.

Application Lifecycle Management

Methods & Tools * Spring 2006 * Page 6

Use cases and functional specifications

Use cases and functional specifications are complementary and can be used together if the need
arises. It is obviously important that they are consistent. A functional specification can capture
much more detailed information (for instance all the field definitions in a workflow) that would
simply cloud a use case and negate its usefulness.

Planning an Implementation

If, when embarking on an enterprise implementation, we try to identify all the use cases that the
developers, architects, managers, etc. will execute we’ll have an enormous job on our hands. To
avoid so called “analysis paralysis” we need to focus our attention on analysis activities that
deliver value. Examining routine check-ins will not be a good use of time. However, a detailed
description of how a check-in triggers an automatic integration build will be. This use case is
worth considering because

• It is complex in that it involves the interaction of several systems

• It is a part of the implementation that delivers significant business value

• It is important to the success of the implementation

Advertisement – Integrate your .NET project into UML 2.0 - Click on ad to reach advertiser web site

http://www.sparxsystems.com

Application Lifecycle Management

Methods & Tools * Spring 2006 * Page 7

Using these criteria we can identify the key use cases of the implementation. Investigating these
use cases will feed into several aspects of the project planning process

• Scoping

• Estimation

• Security

• Documentation

• Training

• Identification of risks

Scope

The diagram below shows a set of use cases grouped into a two phase implementation. As part
of the scoping exercise we have identified the use cases that we will implement first and those
that will wait until a later stage (the criteria used to make this judgement may be complex.
However, the analysis of the use cases will give us the information we need to make an
informed choice). Irrespective of any more detailed description of the individual use cases the
diagram shows the scope of the project succinctly and clearly.

Phase I

Developer

«» «»

Submit defect
for system

testing

«» «»

Submit defect
for integration

test

Project manager

«» «»

Release version

Phase II

«» «»

Publish project
intranet

System

«» «»

View project
metrics

The development of all use cases to some degree of detail at an early stage is useful as it allows
us to verify that the set is consistent and fulfils the requirements of the project as a whole, even
if implementation is phased. It also demonstrates the understanding between the team, or
vendor, implementing the system and the customer or stakeholders.

Estimation

The two use cases below summarise how we may integrate an enterprise help desk system with
our development tracking system. A support representative raises a help request and further
analysis reveals this to require a change to software by the development team. When the support

Application Lifecycle Management

Methods & Tools * Spring 2006 * Page 8

representative classifies the request as a Development Problem we want to automatically raise a
corresponding Defect in the development tracking system. This is then assigned to a developer
and when completed we want to communicate this fact to the help desk. To improve visibility
we could feed back more information about the development process to the Support
Department, but for the sake of this example we’ll just communicate completion.

Support representative

«» «»

Classify as
Development

Problem

Developer

«» «»

Close
Development

Problem

Notice here we’ve set the scope; for this phase we’ll only communicate completion. We could
add more use cases such as Change Defect State to a later phase.

Elaborating each use case gives us help in estimating the time we’ll need for these tasks.

Classify Help Request as a Development Problem

Actor: Support Representative

The support representative edits an existing Help Request. The Request Type is set to
“Development Problem” and the request saved. The request must not already have a
development problem associated with it.

A Defect is raised automatically in the development tracking system. The Request’s ID is
copied into the Defect and the Defect’s ID is copied into the Request. The new defect is
assigned to the Development department.

The request is held in a state of “On Development” until the Defect is closed.

Later in this paper we’ll look at how we can decompose a use case in more technical detail. The
use case rightly doesn’t go into technical detail about how we’re going to achieve the automatic
creation of the Defect, but we do have enough information to identify interfaces with other
systems and areas for automation.

Close Defect

Actor: Developer

A developer has been assigned a Defect to work on. The developer has completed and tested the
work and can close the issue. The developer sets the state of the Defect to Closed.

The state of the related help desk Request is automatically set to “Development Done”.

Application Lifecycle Management

Methods & Tools * Spring 2006 * Page 9

Advertisement – European SEPG 2006 - Click on ad to reach advertiser web site

http://www.espi.org/sepg/

Application Lifecycle Management

Methods & Tools * Spring 2006 * Page 10

Security model

Through developing the important use cases we identify the actors involved. The set of actors
gives us insight into the groups of user we need to consider when we develop the security
permissions for the system.

Developer

Project Manager

Team Leader

Architect

Tester

Test Manager

Each use case identifies the actor(s) that can execute the operations. However, as an adjunct to
our model of the key use cases we can map our actors to more fine-grained permissions:

• The ability to edit data in a form or within the repository

• Visibility of data, say specific fields on a form or areas of a repository

• The ability to perform detailed operations not expressed by the key use cases (for example
the creation of a baseline by, say, Team Leaders only).

Documentation and training

A very important aspect of the use case model we develop is that it is in non-technical language
and uses the vocabulary of the business domain. As such they can be understood by everyone
involved in the project.

• Stakeholders. Does the implementation fulfil the requirements of the stakeholders?

• Training materials. The key use cases usually express the more complex aspects of the
system from an actor’s point of view. This feeds into the development of training materials.
A technical author can elaborate the use case model to explain the system as individual
interactions and as a whole.

• Technical documentation. A use case model is a central part of the development model
within UML (see the 4+1 views of the Unified Process where the +1 is the use case model).

Identification of risks

During the elaboration of our use cases we will gain a better understanding of technical and
organisational complexities. This can lead us to identify risks in several areas:

• People.
This may involve the reluctance to implement processes or the ability two groups of actors
to come to a consensus.

• Process.
We could have difficulty in reconciling the requirements of the actors or integrating new
processes with existing ones.

Application Lifecycle Management

Methods & Tools * Spring 2006 * Page 11

• System.
This can be any technical risk, for instance the integration of systems or the automation of
processes.

• Time.
A particular use case may be required by a certain date to meet regulatory requirements or a
business opportunity.

• External.
A use case may depend on the delivery of functionality within a new version of a tool.
Slipping of the third-party release will introduce delay.

The use case is the focus of discussion and the mechanism to record and track the risks. The use
cases can also be fed into established processes for risk management used by the business.

Execution and Testing

Armed with our use case model we understand the functions of the system that are the most
important as far as delivering business value and/or the most complex in terms of
implementation. The customer and other stakeholders understand the system in terms of the key
use cases and can see concrete progress as each use case is demonstrated.

The implementation of the system will usually consist of system configuration and
customisation, and maybe the development of custom code to integrate with other business
systems. Consequently, it may be the case that a use case contains enough information to allow
it to be implemented. This is rarely the case in a traditional development scenario where most of
the functionality to implement the use case will have to be coded from scratch. In the situation
we are describing most, if not all, of the functionality will be available in the toolset we are
implementing.

Where this is not the case we need an additional level of detail to provide confidence in the
technical solution; confidence in our estimates and documentation for future maintenance.

Drilling into the use cases

Again, we can look to UML to show how we can take a use case and develop its
implementation. This is a large subject and it will only be explored briefly here. There are many
resources available in the literature and on the web. It is common practice to decompose use
cases into Sequence Diagrams. These diagrams show the interaction between system
components in terms of the messages they send to each other. A Collaboration Diagram is a
different way of expressing the same information. You may find one or the other more useful
depending on personal preference. Sequence diagrams focus on the chronology of events and
are useful when considering the synchronous or asynchronous processing of messages.

In sequence diagrams objects, subsystems or systems are represented by dashed vertical lines.
The messages between systems are shown as horizontal arrows that may be annotated with
message details. Time runs from the top to bottom. The left of the diagram can contain
explanatory text.

The two help desk use cases above will illustrate the use of sequence diagrams.

Application Lifecycle Management

Methods & Tools * Spring 2006 * Page 12

Classify as Development Problem

Here, the Support Representative performs the operation to classify the help desk request as a
development problem, probably by setting the value of a field. The help desk system (via a
trigger) must then invoke an integration script that creates a corresponding issue in the
development tracking system. The unique identifier of the development defect is passed back by
the script to the help desk system.

Help Desk
Issue

Development
Tracking System

Classify as
Development Problem

Integration
Script

integration script

create Defect

Defect ID

Trigger calls integration
script
Script creates new
defect, passing the ID of
the request.

Script updates help desk
issue with task ID

Trigger

trigger

Defect ID

This quickly identifies the tasks and deliverables to implement the use case.

• Create a trigger in the help desk system that fires when the classification field is set.

• Create an integration script to create the development task.

• The integration script must have a mechanism to update the help desk issue with the ID of
the development task.

Close Defect

When the developer closes the task we have a similar sequence of operations. Note that in the
previous integration we have recorded the identifier of the help desk issue in the development
task so the second integration script can invoke the set state operation on the correct issue.

Defect Trigger Integration Script Help Desk
Issue

Request Set State = Closed
trigger

integration script

setIssueState

result
setState

Trigger calls integration
script, passing the ID of
the help desk issue
Integration script
advances the state of
the help desk issue
If script succeeds , the
trigger allows the state
of the task to be set to
closed.

For simplicity the diagram does not explore the failure path.

Application Lifecycle Management

Methods & Tools * Spring 2006 * Page 13

Conclusions

Although traditionally used within software development projects we can use the technique of
use cases when we come to deploy Application Lifecycle Management systems. ALM systems
usually touch many parts of the business within and beyond the development sphere so it is
important we understand the scope of the implementation and prioritise its activities in terms of
business value.

The non-technical, problem domain vocabulary used means all the stakeholders can understand
and contribute to their development aiding communication and removing ambiguity. The model
also feeds into other aspects of the implementation such as the detailed design, planning,
training and documentation.

References

Use Case Driven Object Modelling with UML.
Doug Rosenberg & Kendall Scott.
Addison Wesley, ISBN 0-201-43289-7

Developing Software with UML.
Bernd Oestereich.
Addison Wesley, ISBN 0-201-75603-X

Software Configuration Management Patterns.
Stephen P. Berczuk, Brad Appleton
Addison Wesley, ISBM 0-201-74117-2

Agile Approach

Methods & Tools * Spring 2006 * Page 14

Adopting an Agile Method

Alan S. Koch
http://www.ASKProcess.com

Abstract

The argument has been made: “We should be using an Agile software development method.”
And the command has rung out: “Make it so!” Now what do you do? How do you take that one-
line “requirement”, and make it so?

Adopting an Agile method is no different from any other change we might make to the methods
and tools we use. We must determine why we are embarking on this course, choose the method
that will satisfy the need most closely, then map out the path from where we are today to where
we need to be. Then we can “make it so”.

Why Adopt an Agile Method?

Before we start changing things, lets first step back and be sure we understand what it is that we
are trying to fix. After all, if there were not a problem with the way we do things today, there
would be no reason to change. So, our starting point is the original argument for adopting an
Agile method.

If there was significant discussion before the decision to adopt was made, then the information
we are looking for may already exist. If little was discussed (or if there is no record of what was
discussed), then you will need to work with the person who suggested the change to understand
why it was suggested. Are there problems with the methods we use today? What are they? How
bad are they? Who is affected by them? Or is there the expectation that although no large
problem exists, an Agile method would allow us to improve over our current methods? What
sort of improvement is anticipated? How significant is it expected to be? And who might be the
beneficiaries of the improvement?

We also need to discuss with the decision-maker why they decided to approve the idea. What
did they envision? What benefits do they expect? How do they think things will change as a
result of adopting this new method? And most importantly, what would be this person’s
definition of “success” in this endeavor?

Of course, when we discuss these things with multiple people, we may find that there has not
yet been a meeting of the minds on exactly why we should adopt an Agile method. In that case,
we must bring the diverging minds together (preferably in the same room) to discuss their
different perceptions and agree on exactly why we want to do this.

Regardless of what it takes, we must end up with a clear and consistent description of the reason
why we are adopting a new way of working. Indeed, without this, we are virtually assured of
failure, and some of the major constituencies are likely to be unhappy with the end result.
Conversely, with a clear understanding of the “why” of the effort, we are equipped to move
forward with confidence.

Adopt Which Agile Practices?

Now that we know what we want to achieve, we can examine the various practices that we
could adopt and decide which of them will be appropriate in our organization. This is a piece of

http://www.ASKprocess.com/experience.html

Agile Approach

Methods & Tools * Spring 2006 * Page 15

the process that is easy to miss, especially if the mandate is to adopt a specific Agile method
(like eXtreme Programming or Scrum). But even if a specific method has been prescribed, it
may not make sense to adopt all of the practices of that method. We need to carefully consider
the uniqueness of our organization and the projects we undertake to decide which practices will
fit in, and will help us in achieving the goals we have identified.

The major areas that we must consider are:

• Our organization’s culture

• Our customers and how they prefer to interact with us

• The types of projects we do

• The tools and processes that we currently use

• The strengths and weaknesses of our software-related staff

Organizational Culture

All of the Agile methods are built around the concept of a self-directed team. The development
team is not told what it will do and when it will be done by. Rather, they are given broad
direction about goals, and then they work with the customer to determine how to reach those
goals.

Advertisement – Load Test .NET Web Applications - Click on ad to reach advertiser web site

http://www.red-gate.com/products/ants_load/index.htm

Agile Approach

Methods & Tools * Spring 2006 * Page 16

If your organizational culture is build on a “Command and Control” style of management, then
many of the practices of the Agile methods will represent a serious challenge to the
organization. The managers will need to alter their management methods and adopt a more
collaborative relationship with the development teams. This is a very difficult transition for
many old-school managers to make, and could be a significant stumbling block to the successful
adoption of any Agile practices.

Another organizational issue revolves around planning and commitment making. If your
organization expects plans and requirements to be finalized up front, and then adhered to
throughout the project, then the Agile methods’ incremental planning and requirements
definition practices will be problematic. The Agile methods assume that we cannot know all of
the things that will come up during the project, so they plan and define requirements at only a
high level in the beginning. Then they add detail and revise them incrementally throughout the
project, always keeping the project’s broad goals in sight.

Examine the practices that you expect to adopt, and for each, determine the extent to which it
can be implemented given the realities of your organization’s culture, and the benefits you
anticipate can be reasonably expected to accrue.

Customers

All of the Agile methods expect significant participation of the ultimate customer of the project
with the development team throughout the project. This is often accomplished by having a
representative of the customer working closely with the team on a regular basis. (Different Agile
methods carry this model to various extremes – with eXtreme Programming being the most
extreme.)

How active are your customers in your projects now? And more importantly, how readily would
they increase their participation if you asked them to? Most customers have only limited
resources to devote to the project, and any significant increase in interaction could represent an
obstacle to them. Would your customer be able to commit the time and effort that the Agile
practices expect of them?

Another consideration is the details of your contract with your customer. If you are developing
software under contract, then the rules for interaction may be carved in stone and essentially
unchangeable

Advertisement – Software Testing Conference - Click on ad to reach advertiser web site

http://www.sqe.com/stareast

Agile Approach

Methods & Tools * Spring 2006 * Page 17

Even if changing the rules of engagement were possible, would your customer be willing to do
so?

Often, companies use contracts to protect themselves from the organization they are contracting
with. If your customer takes this view, then they may not be interested in collaborating more
closely with your development team.

Examine the practices that you expect to adopt, and for each, determine the extent to which it
can be implemented given the realities of your customers, and the benefits you anticipate can be
reasonably expected to accrue.

Projects

Every project is unique and represents unique challenges and opportunities. Nonetheless, most
organizations tend to take on projects that have a relatively predictable set of attributes. Some
companies do mainly financial and administrative systems. Others do real-time embedded
systems. What kinds of projects to your development teams generally work on? The types of
projects that your teams take on have a certain amount of uncertainty to them. They represent a
certain risk profile. And they include a certain amount to technological innovation.

Although the Agile methods were mainly developed to meet the needs of small projects that
expect significant turbulence and change, they can also be used in many other kinds of
environments. Most of the Agile methods expect that the development team can work face-to-
face on a daily basis. If this is not the case in you organization, then some of the Agile practices
may need to be modified to work with a distributed team.

The promoters of the Agile methods tell us that their methods can and should be used on any
project. Indeed, some of them are experimenting with Agile distributed teams. While it may be
true that Agile methods can be used on any project, the questions you must ask is, should you
use the practices these methods prescribe on your projects!

This means going back to the purpose you identified for adopting an Agile method, and
determining if the practices will support achieving those goals. Examine the practices that you
expect to adopt, and for each, determine the extent to which it can be implemented given the
realities of your projects, and the benefits you anticipate can be reasonably expected to accrue.

Tools and Processes

The methods we employ do not exist in a vacuum. They are strongly influenced by the
environment in which we use them; and an important part of that environment includes the
supporting tools and processes that we depend upon.

As things stand today, your organization already has a set of tools and processes in place. To
what extent will those tools and processes be compatible with and support the new Agile
practices you expect to adopt? Will your processes and tools (e.g. for requirements
management, or for Quality Assurance) stand in the way of adopting Agile practices? And if so,
is there latitude to change them (or get rid of them) in order to make the environment more
conducive to the Agile practices?

The flip side is also true. Many of the Agile practices require specific tool and process support
in order to be effective. For example, eXtreme Programming expects that automated testing
tools are available to the entire programming team, and that they use them heavily. Are such

Agile Approach

Methods & Tools * Spring 2006 * Page 18

tools available in your organization? And if so, are there enough licenses to allow this
widespread use?

Another example is code control tools. Most of the Agile methods assume strong code control
systems and strict adherence to the disciplines involved in using them. Liberal use of things like
refactoring and shared ownership of code can only work in an environment that provides the
necessary code control tools and processes.

Examine the practices that you expect to adopt, and for each, determine the extent to which it
can be implemented given the realities of your tools and processes, and the benefits you
anticipate can be reasonably expected to accrue.

Staff

As we noted earlier, the Agile methods expect that development teams will be self-directing.
This means that instead of being told what to do, the team understands the objectives of the
project, and they collaborate with the customer and each other to determine the most appropriate
steps to take at each juncture.

In order to act autonomously, the team members must be willing and able to take on a new level
of responsibilities and accountability. Although this may seem to be an easy step (based on the
complaining we often hear from programmers), it is actually quite a leap to go from
complaining about the status quo to taking on the responsibility for creating a new one!

Many of our programmers are not as bold as we might expect. They may have good ideas about
things to change, but be unwilling to take on the accountability that comes with being a decision
maker. To many folks who thrive on technical challenges, the messiness of project and customer
challenges can be quite intimidating.

And of course, our development teams do not represent uniformity in capabilities. Some of our
folks are indeed super stars! But others’ abilities are quite lacking. If we are honest with
ourselves, we must admit that the average programmer on our teams is only average! And
around half of them are below average.

The Agile methods empower teams to direct their own work (in collaboration with the
customer). It is true that as they work in this environment, our people will learn and grow in
their ability to deal well with making project decisions. But how successful can they be at the
beginning? And at what point will they reach their maximum potential?

Examine the practices that you expect to adopt, and for each, determine the extent to which it
can be implemented given the realities of your staff today, and the benefits you anticipate can be
reasonably expected to accrue.

Adopting an Agile Method

After we have considered all of the things we just discussed, we will be equipped to decide
which Agile practices would be appropriate in our organization, given our culture, customers,
projects, tools, processes and staff. Armed with this information, we can evaluate each Agile
practice against our objectives, and determine which ones we should adopt, and if we need to
customize them in any way.

Agile Approach

Methods & Tools * Spring 2006 * Page 19

In essence, we will be “rolling our own” Agile method. But isn’t that what we need to do? We
don’t want to adopt something that might have worked in some other organization. We want to
adopt what will work in our company. We want to do the right thing so we can achieve our
goals in this adoption, and improve our ability to do a good job of building good software.

Advertisement – Software Development Jobs - Click on ad to reach advertiser web site

Recruit Software Development Talents
Do you want to recruit software development professionals? Methods &
Tools reaches each month more than 39'000 of them and receives more
than 20'000 web site visitors.

You can place a job advertisement with us for $15 each line for the first
five lines and $10 for additional lines. These ads will be visible in our text
or PDF issues AND on our web sites for as long as three months. Send a
mail to contact@methodsandtools.com if you are interested

Special introductory offer: $100 for a 10 lines ad + url
Valid until June 30, 2006

Detailled advertisement information on
http://www.methodsandtools.com/advertise.html

http://www.methodsandtools.com/advertise.html
http://www.methodsandtools.com/advertise.html

Continuous Integration

Methods & Tools * Spring 2006 * Page 20

The Cornerstone of a Great Shop

Jared Richardson
http://www.jaredrichardson.net

I did a lot of lawn mowing when I was younger. My brother and I tried to make our summer
money by asking real estate agents if we could mow the lawns of their absentee clients. We'd
usually land one realtor each year and they'd give us enough business to keep us busy all
summer. One of the things I learned is how hard it is to cut a straight line when you're mowing a
wide yard. When I was in the middle of the yard, I felt like I was cutting a straight line, but then
I'd get to the end of the row and look back to discover a crooked line. It always amazed me how
something could seem so right and be so off course.

Timely Feedback

A software project can be a lot like mowing a yard. Even though we try to move in a straight
line, and we think we are, later we look back and are amazed at how far the project ran off
course.

Whether mowing yards or building software, we need timely feedback to help keep us on track.
Looking back at completed software projects, or lawns, shows you where you missed the mark,
but it's usually too late for that project. We need feedback while we're still in the midst of the
work. I never found a good way to get that feedback for my lawn mower, but I have found a
guide for software projects. I use continuous integration systems to keep my projects on track.

Continuous Integration

Mike Clark calls this type of system a "virtual build monitor". This extra team member keeps an
eye on your project and lets you know when things start getting off course. If you invest in a
good automated test suite, you'll quickly catch all sorts of errors that traditionally pull good
projects off course.

The more shops I get to observe, the more I'm seeing that continuous integration (CI) plays a
vital role in keeping a shop on course. In fact, these days I'm telling people that I've learned one
of the basic, fundamental principals to keep both you and your project on target.

Do you want to make your product a great one? Do you want to be the best developer you can
be? Then make a solid continuous integration system a first-class member of your team and the
cornerstone of your shop. A good CI system eliminates many of the problems that prevent you
from working on the product, your career and your craft.

A continuous integration system does several things automatically.

• Monitors your source code

• Compiles after every change

• Tests your compiled code

• Notifies the developers of problems as soon as they occur

http://www.jaredrichardson.net/

Continuous Integration

Methods & Tools * Spring 2006 * Page 21

Figure 1. Continuous integration actions

As we move forward, keep an open mind and try to see where each step could’ve helped you in
the last few months. Then, when we’re done, I’m going to point you to a Continuous Integration
system that is trivial to install, easy to use, and open source to boot.

Advertisement – Knowledge is Power - Click on ad to reach advertiser web site

http://www.mks.com/go/mtdrequirements

Continuous Integration

Methods & Tools * Spring 2006 * Page 22

Let's look at what a continuous integration system is and why it helps so much.

The Steps of Continuous Integration

Continuous integration systems all have a few common steps.

First, CI systems monitor your source code. The system usually watches your source code
management system (CVS, Subversion, Perforce, ClearCase, Visual Source Safe, etc) but most
systems can also monitor other resources, like file systems. This is how the software knows it's
time for a build. Every time your code changes, the CI system checks out the latest version of
your code.

Second, the software compiles your project. The system runs your existing build scripts by
wrapping them in an Ant script. In this step, your CI software is requiring you to have a scripted
build. If you builds are not robust or repeatable, your CI tool will expose this flaw. It will force
you to have a clean build system.

Third, CI systems tests yours new build. The tests are created (or wrapped) in an Xunit
framework (Junit, Nunit, HtmlUnit, jsUnit, etc), which means you have access to dozens of test
frameworks that range from unit testing to browser click through testing. When you set up a
system to run tests, people are more likely to write the tests. They'll also contribute the tests
they've been hiding on their own machines.

Lastly, your CI system will notify everyone of the results. The developers or testers who just
changed the code will get email telling them how long the build and test took, how many tests
passed, how many failed, etc. Your system will also archive the results to a web page.

However, the publishing step is very configurable. You can publish in a variety of interesting
ways beyond a standard web page. You can publish to a custom web page, XML log, email, an
instant messaging client, or even a Lava Lamp. The publish step is an extremely flexible way of
sharing your build results.

What's the big deal?

There are several key practices that continuous integration either requires or encourages. They
are source code management, scripted builds and test automation. Much of the benefit that
comes from using a CI system actually comes from the foundational practices that a CI system
requires.

Don’t get me wrong. CI adds plenty of benefit as well. It’s just that many day-to-day problems
go away when you use these other practices first.

Code Management

One of the first things your CI system will do for you is make sure you've got your source code
organized and (hopefully) into a source code management system. After all, your CI software
can't watch a code tree you can't identify. The first practice CI encourages is good source code
management.

This benefit will seem very elementary to many people, but I've seen shops that still use network
drives and zip files. Quite a few developers still haven't discovered source code management.

Continuous Integration

Methods & Tools * Spring 2006 * Page 23

Proper source code management doesn't take much time at all once you've learned how to use it.
Like any good tool, you’ll save much more time than you’ll spend learning to be effective with
the tool.

You’ll save the time you normally spend reconciling code differences by hand, not to mention
rewriting the work that careless coworkers overwrite from time to time. Code collisions and lost
work are common issues but a good source code system also merges your changes for you,
maintains a history for each file, and more.

If you're not using a proper source code management system, I urge you to rethink you position.
It's a huge time saver.

A Scripted Build

The second thing your CI system will require is a scripted build. Moving to this step requires a
level of build automation. Fortunately, this is easy to add. There are many tools available, both
commercial and open source, that solve this problem for you. You still have to understand how
to build your product, but these tools will keep from learning the different command line
options for javac or jar on different operating systems. Look at tools like Ant, Maven, and Rake.

Like good source code management, a scripted build provides many benefits.

For starters, your teammates aren't all busy building their own version of the build script.
Everyone needs to build and developers, being clever, will all find a slightly different way to
solve the same problem. When you have a single build script, everyone's building the same way.
It's okay is someone still wants to build differently (an IDE maybe?), but they need to have the
ability to build the same way that everyone else does.

Don’t ignore the maintenance savings either. You'll eventually improve the build script, find a
bug in it, or decide to make it faster. With a single script, you do the work once time. When
everyone has his or her own build method, everyone solves the same problem repeatedly. What
a waste of time!

When you build your code the same way, everyone gets the same version of the product. This
means that the testers report problems in the same version of the program the developers run.

Without a canonical build script, you don't always get everyone on the same page. In fact, the
customers, testers and developers often run very different versions of the same product and then
wonder why they can’t reproduce the same issues. If you’ve had trouble reproducing your
customer’s bugs, then start here. Is everyone running the same version of the product?

Test Automation

Another practice that a CI system encourages is test automation. Writing and running tests is a
huge milestone for many shops and is one of the hallmarks of a great shop. I think test
automation is the core of why a CI system adds such benefit. People who recognize the benefit
of automating common tasks tend to be more strategic thinkers. They automate everything
possible, including building and testing, and it frees them up for more interesting work. (Of
course, this doesn’t eliminate manual testing, but that’s another topic.)

Continuous Integration

Methods & Tools * Spring 2006 * Page 24

Advertisement – MySQL User Conference - Click on ad to reach advertiser web site

http://www.mysqluc.com/

Continuous Integration

Methods & Tools * Spring 2006 * Page 25

What is an automated test?

• Binary

• Automatic

• Repeatable

Binary

A test with a binary result passes or fails unambiguously. There’s no question about whether the
test succeeded. Sometimes a test will return a result that requires a judgment call from a tester.
The odds are good that you don’t need this.

Work hard to make your tests clean and binary. Write them so they evaluate the result and tell
you if it passed or failed.

Automatic

If the test isn't automatic then someone has to set up an environment, start the test, click a
button, or look at the results. When this happens, the test becomes interactive again. Much of
the benefit of test automation is lost.

You've created a hybrid test somewhere between an interactive test and an automatic test.
Instead of letting a small number of testers baby-sit a large number of tests and continually
adding more tests, you'll have a large number of testers looking at log files all day long. Half-
automated tests are certainly better than pure interactive testing but they fall far short of where
you can be. Work hard to make your tests completely automatic, including the determination of
the pass or fail status.

Repeatable

An automated test also needs to be repeatable. A good test doesn't give you different results for
three out of five test runs. If your tests aren't repeatable, break the tests down into smaller tests.
Eventually you'll isolate the problem area and as a bonus, you’ll have new tests created for your
test suite.

Don't forget about external dependencies either. You can rebuild and restock database tables
cleanly before each test run with tools like Ant's SQL task or dbUnit
(http://dbunit.sourceforge.net). A dirty database table can introduce all sorts of variation into a
test run. (You may want to create a small but representative data set to load for your testing
runs.)

Leverage Yourself

An automated test is a great way to leverage your experience and expertise. As an expert on
your product, you probably know how to test parts of it in a way that few other people can. You
can encode that knowledge in a reusable format by creating an automated test. This makes your
experience available without diverting your attention. Sometimes a co-worker will run the tests,
other times you will. In other cases, a program will run them.

Let these bits of your expertise exercise the product while you do other things, like go home on
time, or stay late and solve problems that are more interesting. These tests might run while you

Continuous Integration

Methods & Tools * Spring 2006 * Page 26

are coding or at home sleeping, but you are doing something else. Your tests are working in the
background.

Getting Started

Sometimes people won’t install a CI system because they don't have tests ready to run in the
system. There are enough benefits from fast compile cycles to justify using Continuous
Integration, so don’t wait. You don’t wait to see a doctor until you’re not sick anymore, right?
Having the CI system keep your compiles clean will free up some of the time needed to start
writing tests as well.

I've also found that people are much more likely to write automated tests if they’re sure the tests
will be used. By providing a CI system, you have a place to house your tests and run them
immediately. This is the best way I know to encourage test creation. People want to create
things are used and this assures them the tests they create will run regularly.

The best way to get started with Continuous Integration is to start using an existing software
package. I'm going to point you to CruiseControl on Source Forge (http://cruisecontrol.sf.net/).
Since version 2.3 Cruise Control comes with an embedded servlet engine (Jetty-
http://jetty.mortbay.com) and a sample project. You can download the project and see CC
running in less than five minutes. Then, to add your own project, just copy the bundled example.
It’s very easy to get started.

The CC team has a great write-up on how to run the binary release of CruiseControl. Visit
http://cruisecontrol.sf.net/ and click the “Getting Started” link on the left.

In Conclusion

The teams I know running smoothly and cleanly always have continuous integration in place.
It's a practice I respect more everyday.

I’m seeing this practice overshadow all others. Teams that run smoothly use continuous
integration. They respect the system instead of tolerating it, and the developers treat the
notifications seriously. When the system says something is broken, these teams address the
problem quickly. These teams insist on CI coverage from the first day of a new product.

Other shops, even those who are using a CI system but ignoring it, are very different. They live
in turmoil. Heroic efforts are not the exception but the rule. In fact, these teams always seem to
be running behind. They always have a crisis issue to resolve or deadline to meet.

They work and live in a perpetual twilight of stress and problems. They’ve lived there so long
that they think it’s the only way to write software. Sadly, these teams tend to burn people out.
I’ve been there and it’s no fun. Creating software can be a great joy -and is- when done right. CI
can’t solve every problem, but it can remove several categories of problems that would
otherwise clutter your day and slow you down.

If you’re not using a Continuous Integration system, try one out this week. Get a system
installed and leave it running for one month. At the end of that month, turn it off if you don’t see
the benefit.

http://cruisecontrol.sf.net/)
http://jetty.mortbay.com/
http://cruisecontrol.sf.net/

Continuous Integration

Methods & Tools * Spring 2006 * Page 27

Don’t be surprised if you find yourself missing the system the first day it’s gone. You might just
become one of the developers who insists on continuous integration coverage on your new
projects.

Resources:

• Martin Fowler and Matthew Foemmel on Continuous Integration
http://martinfowler.com/articles/continuousIntegration.html

• CruiseControl page http://cruisecontrol.sourceforge.net/

• CI product page: http://www.jaredrichardson.net/ci.html

• Scripted build links: http://www.jaredrichardson.net/buildscripts.html

• Mike Clark’s automation blog: http://www.pragmaticautomation.com

• Jetty http://jetty.mortbay.com/

http://martinfowler.com/articles/continuousIntegration.html
http://cruisecontrol.sourceforge.net/
http://www.jaredrichardson.net/ci.html
http://www.jaredrichardson.net/buildscripts.html
http://www.pragmaticautomation.com/
http://jetty.mortbay.com/

Classified Advertising

Methods & Tools * Spring 2006 * Page 28

AdminiTrack offers an effective web-based issue and defect
tracking application designed specifically for professional
software development teams. See how well AdminiTrack meets your
team's issue and defect tracking needs by signing up for a risk
free 30-day trial.

http://www.adminitrack.com

ObjectiveView issue 9 is now available at
www.ratio.co.uk/objectiveview.html Issue 9 contains articles on
AspectJ, AJAX, Ruby and Ruby on Rails, + opinion pieces by
Rebecca Wirfs-Brock, Scott Ambler and Ken Pugh.

Interested in training in Ajax, UML or Ruby/Rails - visit
www.ratio.co.uk for full details.

Advertising for a new Web development tool? Looking to recruit
software developers? Promoting a conference or a book?
Organizing software development training? This space is waiting
for you at the price of US $ 30 each line. Reach more than
39'000 software developers and project managers worldwide with a
classified advertisement in Methods & Tools. Without counting
the 1000s that download the issue each month without being
registered and the 25'000 visitors/month of our web sites! To
advertise in this section or to place a page ad simply go to

http://www.methodsandtools.com/advertise.html

METHODS & TOOLS is published by Martinig & Associates, Rue des Marronniers 25,
CH-1800 Vevey, Switzerland Tel. +41 21 922 13 00 Fax +41 21 921 23 53 www.martinig.ch
Editor: Franco Martinig ISSN 1661-402X
Free subscription on : http://www.methodsandtools.com/forms/submt.php
The content of this publication cannot be reproduced without prior written consent of the publisher
Copyright © 2006, Martinig & Associates

http://www.adminitrack.com/?affid=1056
http://www.ratio.co.uk/objectiveview.html
http://www.ratio.co.uk/
http://www.methodsandtools.com/advertise.html
http://www.methodsandtools.com/forms/submt.php

